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Breeding Young as a Survival 
Strategy during Earth’s Greatest 
Mass Extinction
Jennifer Botha-Brink1,2, Daryl Codron3,4, Adam K. Huttenlocker5,6, Kenneth D. Angielczyk7 & 
Marcello Ruta8

Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic 
diversity, morphological disparity, abundance, behaviour and resource availability as key determinants 
of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass 
extinctions has not been investigated, despite the critical role of such traits for population viability. 
We use bone microstructure and body size data to investigate the palaeoecological implications of 
changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-
Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are 
consistent with truncated development, shortened life expectancies, elevated mortality rates and 
higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics 
indicate that an earlier onset of reproduction leading to shortened generation times could explain the 
persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help 
explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts 
for differential survival in mammal ancestors after the PTME and provides a methodological framework 
for quantifying survival strategies in other vertebrates during major biotic crises.

Mass extinctions reshape biological communities as a result of extensive biodiversity losses over short time peri-
ods and novel selective pressures that either trigger secondary extinctions or alter tempo and mode of evolu-
tion1. The post-extinction recovery phases are as important as the mass extinctions themselves for understanding 
models of ecosystem regeneration and group diversification, particularly in the case of organisms that survive 
extinctions at low diversity before radiating extensively. The most catastrophic crisis in Phanerozoic history, the 
Permo-Triassic Mass Extinction (PTME), was characterised by a rapid decrease in global biodiversity, leading to 
a radical restructuring of ecosystems 251.9 Ma2.

Both marine and terrestrial communities showed reduced diversity immediately after the PTME, a likely con-
sequence of primary productivity losses that caused secondary extinction cascades1,3,4. Additionally, the climate 
of the continental Triassic was characterised by less predictable rainfall regimes, increased aridity5,6 and elevated 
temperatures7,8. These unstable conditions9 persisted for some 5 million years, such that even the survivors of the 
PTME may have been at heightened risk of extinction throughout this interval. However, extinction levels were 
not uniform across all organisms. Among tetrapods, some disappeared completely (e.g. gorgonopsians, pareia-
saurs)6, others survived at reduced diversity (e.g., procolophonoids, therocephalians, dicynodonts)6,10,11, and yet 
others (e.g. temnospondyls, diapsids, cynodonts)12–14 flourished. A ‘Lilliput effect’ indicates reduced survivorship 
of large-sized Permian tetrapods across the Permo-Triassic Boundary (PTB). For instance, both therocephalian 
and cynodont therapsids became smaller15. In the case of therocephalians, both size decrease within lineages and 
preferential survival of small taxa have been observed. Triassic Lystrosaurus species also showed evidence of a 
body size reduction16,17, but it is unclear whether these species approached smaller asymptotic sizes than Permian 
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Lystrosaurus species or whether they did not survive long enough to attain sizes comparable to their Permian 
relatives.

High mortality rates are known to affect populations from unstable and resource-limited environments18. 
If changes in growth patterns occur within a lineage, particularly in the aftermath of a catastrophic event, then 
analyses of such patterns across various species may provide additional clues to differential responses to a crisis. 
Ultimately, a species’ potential to modify its life history strategies may be key to its survival19–21. To test this prop-
osition, we examined growth patterns in representatives of all boundary-crossing therapsid clades from the South 
African Karoo Basin (dicynodonts, therocephalians, cynodonts), using data from the largest histological database 
of Permo-Triassic non-mammalian therapsids compiled to date. The clades in question are appropriate for our 
investigation because they occupy a wide range of ecological habitats, adaptive zones, trophic levels, and body 
sizes. Special consideration is given to the dicynodont Lystrosaurus, the most iconic of all PTME survivors. This 
very abundant genus (3000 +  specimens in museum collections) dominated Early Triassic ecosystems worldwide 
for millions of years during the post-extinction recovery phase. It thus provides a sufficiently large sample for 
studying population structure and differential survival during mass extinctions.

Identification of different ontogenetic stages in the fossil record is problematic, both because different defini-
tions of maturity apply (e.g., asymptotic size, sexual maturity) and because some osteological proxies for maturity 
(e.g., osteohistological characters, ossification sequences, secondary sexual characteristics, asymptotic size) do 
not always coincide22. Nevertheless, we can make use of potential asynchrony in putative osteological correlates 
of maturity to gain insights into how animals may change their growth patterns and life history strategies during 
extinction events.

We assessed life histories using bone tissue microstructure because bone tissues are known to reflect rates 
and rhythms of postnatal development in vertebrates23. Our histology sample comprises 34 taxa (103 specimens; 
177 limb bones and three ribs) belonging to the boundary-crossing clades Dicynodontia, Therocephalia, and 
Cynodontia, as well as gorgonopsian therapsids (a non-boundary crossing clade), altogether spanning some 
20 million years of therapsid evolution (Supplementary Appendix 1). To gain insights into the demographic 
structure of extinct populations before and after the PTME, we investigated body size distributions in therapsids 
(Supplementary Appendix 2) as a framework for interpreting relative abundances of different age classes (using 
basal skull length [BSL in mm] as a proxy for body size)15,24 and, ultimately, to infer differences in survivorship 
rates.

Results and Discussion
Most taxa were characterised by early rapid growth, indicated by the presence of fast-growing fibrolamellar bone, 
with its highly vascularised woven-fibred matrix associated with primary osteons. Among smaller therapsid 
species, a more organized tissue (parallel-fibred bone) and decreased tissue vasculature indicate lower overall 
growth rates than in larger species (see Supplementary Text), a typical condition for tetrapods23. In each species, 
larger, ontogenetically older individuals were characterised by slower-forming bone tissues with reduced spac-
ing between growth marks in the outer cortex. This indicates that growth rates decreased during ontogeny as 
animals approached somatic maturity and asymptotic size. Although the animal may not have ceased growing 
altogether, growth deceleration marks a departure from the juvenile stage (see Supplementary Appendix 1 for 
details). Such a growth rate shift usually coincides with the onset of reproductive maturity in extant tetrapods 
that show multi-year growth to large body size25–29, and this has been postulated for other extinct species, e.g. 
non-avian dinosaurs30–32.

Reproductive maturity can be reached before or after asymptotic size. In some small mammals (e.g. rodents) 
and birds, asymptotic size is reached so rapidly (often within the first year) that reproductive maturity generally 
occurs after somatic maturity. In large reptiles and many medium to large-sized mammals, a decrease in vascular-
isation, decreased spacing between growth marks and/or deposition of slow growing lamellar or parallel-fibred 
bone in the outer cortex typically coincide with the onset of reproductive maturity25,27–29,32, although reproductive 
maturity may occur prior to this transition in larger species27.

In the therapsids analysed in this study, the transition from rapidly forming fibrolamellar bone to 
parallel-fibred or lamellar bone, a decrease in vascularisation towards the periphery, decreased spacing between 
growth marks and/or the appearance of outer circumferential lamellae (OCL) were used as indicators that an 
individual had reached reproductive maturity. Analysis of these features in individual fossils compared against 
% BSLmax (maximum basal skull length) showed that they generally appeared in Permian taxa by the time indi-
viduals had reached 70% BSLmax. Growth marks indicate either periodic decreases (annuli) or pauses (lines of 
arrested growth or ‘LAGs’) in growth, which occur annually or seasonally25. Thus, growth marks observed prior 
to the onset of the slower-forming tissues indicated that it took several years for individuals to reach somatic 
maturity, and this pattern was widespread among Permian taxa. Growth marks in Triassic theriodonts and dicy-
nodonts were generally absent or rarely present in the form of one or two annuli. There is no indication that 
skeletal maturity was reached in any of the Triassic Lystrosaurus specimens (i.e., all sampled individuals were still 
growing rapidly at the time of death, regardless of body size). Morphological features such as muscle scars, degree 
of ossification and the appearance of skull ornamentation are variable relative to body size among Lystrosaurus 
individuals16, thus osteohistology is likely the most reliable indicator of the ontogenetic stage of these specimens.

The most striking difference between Permian and Triassic therapsids is that the former had substantially 
more growth marks than the latter; this difference is significant even after accounting for inter-elemental var-
iability (p <  0.0001; and see Supplementary Appendix 3), as well as phylogenetic relationships and body size 
differences amongst taxa (phylogenetic generalized least squares regression with mean number of growth 
marks as the dependent variable and BSL as a covariate; adjusted R2 =  0.4058; Fig. 1, Supplementary Figs 1–3; 
Supplementary Appendix 4 and 5). Permian therapsids also deposited growth marks at smaller relative sizes than 
Early Triassic therapsids, and went through prolonged, multi-year growth to reach adult body sizes (i.e., somatic 
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maturity). In contrast, most Early Triassic therapsids revealed rapid sustained growth over fewer seasons (Fig. 2; 
Supplementary Figs 4 and 5).

Importantly, slower-forming parallel-fibred bone is absent from all Early Triassic Lystrosaurus specimens 
examined. Growth marks are rare: they are present in the largest specimens, but no more than one growth mark 
was observed. Even the largest known specimens of the Triassic species L. murrayi and L. declivis do not show 
any of the histological features typically associated with reproductive maturity (see Supplementary Fig. 4), such 
as decreased spacing between growth marks, a shift to slower-forming bone tissue, or the occurrence of outer 
circumferential lamellae. However, they do show evidence of a departure from the juvenile stage, in the form 
of an overall decreased vascularity compared to smaller individuals, and smaller, fewer vascular canals at the 
outermost peripheral cortex in places. Large specimens of L. murrayi and L. declivis are also very rare in museum 
collections worldwide, and this observation is unlikely to be due to a lack of preservation given the large number 
of Triassic specimens and the fact that large specimens tend to have a higher preservation potential in the fossil 
record. Based on these observations, we hypothesize that Triassic Lystrosaurus had shorter life expectancies and 
likely reached reproductive maturity at younger ages than Permian members of the genus, and before asymp-
totic size was attained (as suggested for some non-avian dinosaurs and many extant large-bodied reptiles)30,31. 
Small Triassic therocephalians and cynodonts do show evidence of approaching somatic maturity within few 
seasons21,33.

In order to test this hypothesis, and to understand more fully how differential growth influenced species’ 
apparent demographics and ecology, we compared body size distributions in Lystrosaurus before (L. maccaigi, 
L. curvatus) and after (L. murrayi, L. declivis) the PTME, using BSL data for 246 individuals (Supplementary 
Appendix 2; note that although L. curvatus did survive the extinction, representative specimens are rare [n =  2], 
and we excluded this small sample from the Triassic group). Because age and size are related, we expected 
post-extinction Lystrosaurus to have relatively fewer large individuals, as histological data suggest these taxa 
tended to die at earlier life stages. Consistent with this prediction, frequency-size distributions of the two Permian 
species differed from those of the Triassic species, in that the former distributions were normal (Shapiro-Wilks 
p =  0.498 and 0.152, respectively), whereas the latter were right-skewed, indicative of a bias towards smaller 
individuals (p <  0.01 and <  0.001, respectively; see Supplementary Fig. 6). Moreover, both Triassic species were 
represented by significantly fewer large individuals than were their Permian counterparts (i.e., >70% BSLmax; 
X2 =  4.023 to 10.879, df =  1, p =  0.001 to 0.045; Fig. 3a). We also collected BSL data for a further 14 Permian 
dicynodonts, 13 of which had BSL distributions differing from those of Triassic Lystrosaurus (Supplementary 

Figure 1.  Osteohistological sections of Permian (a–c) and Triassic (d–f) late subadult or adult therapsids. 
Numerous growth marks (arrows) characterise Permian taxa, whereas two, but generally no growth marks 
characterise Early Triassic taxa. (a) Dicynodont Lystrosaurus maccaigi, humerus NMQR 3663a.  
(b) Therocephalian Moschorhinus, humerus NMQR 3939a. (c) Cynodont Procynosuchus, radius BP/1/3747. (d) 
Lystrosaurus murrayi, humerus BP/1/3236. (e) Moschorhinus, humerus BP/1/4227a. (f) Cynodont Thrinaxodon, 
radius BP/1/4282a. Scale bars equal 1000 μm (a,b,d); 500 μm (e); 100 μm (c,f).



www.nature.com/scientificreports/

4Scientific Reports | 6:24053 | DOI: 10.1038/srep24053

Figs 6 and 7 and Supplementary Table S1; Pelanomodon moschops and Dicynodon lacerticeps were the exceptions). 
However, none of these taxa survived the PTME, so we could not examine within-lineage distribution shifts.

Results from both histologic and body size data are consistent with the hypothesis of a reduced life expectancy 
for Early Triassic therapsids. Taphonomic and collector effort biases are unlikely to have been responsible for the 
observed patterns, because such biases would affect primarily smaller individuals, and thus cannot explain the 
observation that relatively fewer larger individuals were recovered, when such individuals should in fact be more 
common. Moreover, although there was a change in taphonomic conditions between the Permian and Triassic, all 
tetrapod body sizes are documented in both periods, and relative fossil abundance does not decrease in the Early 
Triassic17, making taphonomic bias unlikely. Other large non-therapsid taxa are known from the same geologic 
horizons, including the predatory archosauromorph Proterosuchus. Thus, tetrapod fossils of all sizes are preserved 
in sedimentary facies, usually in mudrock (rarely in sandstone), and Lystrosaurus specimens are no exception. 
Especially noteworthy is the fact that collecting efforts have been evenly spread for the past 120 years across 
all Permian and Triassic stratigraphic intervals, encompassing a geographic area of some 730 000 km2. Intense 
sampling in all types of facies in the Early Triassic Lystrosaurus Assemblage Zone during the past 20 years makes 
collector and preservation bias highly unlikely34.

Due to the rarity of somatically mature therapsids in the Early Triassic (i.e. those in which bone histology 
displays a clear transition from higher juvenile growth rates to much slower growth over the course of ontogeny), 
and the abundance of Lystrosaurus during this time interval, we posited that reproductive maturity in these ani-
mals was likely reached before asymptotic size was achieved. Given that age at first reproduction was an unknown 
variable, we explored the implications of this hypothesis using simulations of population dynamics based on 
hypothetical life tables and size-structured matrix models (Supplementary Appendices 5–7). Simulations incor-
porated lower survival rates and higher environmental turbulence for Early Triassic populations. We predicted 
that, as Early Triassic species experienced shorter and less predictable periods suitable for growth, they would 
have modified their breeding strategies to compensate for lower survivorship rates. We considered two scenarios: 
(1) increased absolute reproductive output, implying larger clutch/litter sizes or more breeding events per year 
for the few individuals that reached large size; (2) reaching reproductive maturity earlier in life (Supplementary 
Fig. 8). Although these two scenarios are not mutually exclusive, we treat each of them in turn as their effects on 
population dynamics might be totally different, such that the potential benefits of each may vary across species 

Figure 2.  Growth mark counts mapped onto a phylogeny of Permo-Triassic therapsids. Coloured +  black 
columns: observed stratigraphic ranges; faded colours: ghost lineages. Dates taken from2, phylogeny 
taken from21,48. Anis, Anisian; Cap, Capitanian; Chx, Changxingian; Ind, Induan; Olen, Olenekian; Wor, 
Wordian; Wuc, Wuchiapingian; CAZ, Cynognathus Assemblage Zone; CiAZ, Cistecephalus Assemblage 
Zone; DAZ, Daptocephalus Assemblage Zone; EAZ, Eodicynodon Assemblage Zone; LAZ, Lystrosaurus 
Assemblage Zone; PAZ, Pristerognathus Assemblage Zone; TAZ, Tropidostoma Assemblage Zone; TapAZ, 
Tapinocephalus Assemblage Zone; KB; Karoo Basin; PTB, Permo-Triassic boundary, SGCS, Standard Global 
Chronostratigraphic Scale. Grey shading indicates theriodont therapsids.
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with different body sizes, ontogenetic growth rates, etc. In our study sample, hypothesis (2) is consistent with our 
observations that Triassic therapsids appear to have died more frequently at younger ages than their Permian 
relatives, before they reached comparable body sizes.

Figure 3.  Differences in population structure, life expectancy, age at reproductive maturity and fecundity. 
(a) Body size distributions based on basal skull length (%BSLmax) showing distinct differences between Permian 
(blue) and Triassic (red) species of Lystrosaurus (see text and Supplementary Material for results of chi-squared 
analysis comparing frequency distributions of larger and smaller individuals across taxa). (b) Modelled size 
class distribution under six scenarios: Early breeding (triangles) results in the observed Triassic pattern (i.e. 
fewer % of larger individuals). Blue, long life; Red, short life. Circles, late breeding and low fecundity; Triangles, 
early breeding, low fecundity; Squares, late breeding, high fecundity. Results are simulated stable size class 
distributions resulting from matrix model projections, presented as means with 95% confidence intervals over 
1 000 permutations of each model condition. (c) Extinction rates for the six scenarios. Early-breeding taxa 
have the lowest extinction rates. log Wx, proportion of individuals at size class X at stable size distributions; Pext, 
probability of extinction.
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Matrix model projections converged on stable size distributions that paralleled the observed demographic 
patterns in our BSL dataset: amongst earlier-breeding species, the largest individuals were comparatively 
under-represented (Fig. 3b). Moreover, our models revealed changes in extinction risk associated with each life 
history strategy. In turbulent environments, high population extinction rates were predicted (>40% of simu-
lations; Fig. 3c and Supplementary Fig. 9). This figure was reduced to <3% by introducing an earlier onset of 
breeding, consistent with life history evidence for Triassic taxa. In contrast, elevated absolute breeding output 
did not appear to alleviate extinction risk. These results suggest that breeding earlier in life would have enabled 
larger-bodied therapsids such as Lystrosaurus or Moschorhinus to survive in turbulent, unpredictable environ-
ments that followed the PTME.

This study pioneers the concurrent use of bone histology, palaeoecological reconstruction, and ecological 
modelling to investigate the interplay amongst growth rates, life histories, and ecology, and their effects on dif-
ferential survival amongst vertebrates during the PTME. It presents a generalized theory of survival strategy 
amongst therapsids that accounts for observed life history traits in the Triassic (size distributions and growth 
patterns), explains differential survival patterns, and meets predictions of ecological simulations. Because all of 
the data presented here was collected from Permo-Triassic therapsid fossils of the Karoo Basin, South Africa, 
future work should aim to compare changes in life history strategies in other basins and in other tetrapod groups 
(e.g., parareptiles, archosauromorphs).

In conclusion, the PTME was the most catastrophic of the five largest mass extinctions in Earth’s history, 
having produced a set of conditions that were unique to this event (e.g., extreme, prolonged instability in global 
carbon cycles)35. It has been suggested that the Early Triassic was a time of experimentation for life forms living 
in extreme conditions36,37. Our results show that Triassic therapsids generally did not attain large sizes, reached 
reproductive maturity (and sometime somatic maturity) within fewer seasons (supported by the presence of few 
or no growth marks prior to growth deceleration) and had shortened life expectancies. In contrast, their Permian 
relatives attained larger sizes and displayed prolonged, multi-year growth (evidenced by numerous growth marks) 
to somatic and reproductive maturity. As large Triassic Lystrosaurus individuals are absent, and collection/field 
observations suggest that this is not a sampling artefact, we propose that these individuals were likely breeding 
young to compensate for dying at an early age, a hypothesis supported by our modelling. Given the persistence 
and abundance of Lystrosaurus in the Early Triassic, we posit that they experimented with new life history strat-
egies. Lystrosaurus may have had unusual developmental plasticity compared to Permian dicynodonts and may 
have been able to breed while still growing fairly rapidly. Our demographic simulations reveal how such a shift to 
breeding at younger ages in the face of reduced life expectancies could have helped therapsids survive the harsh, 
unpredictable environmental conditions of the Early Triassic, and that this change in life history played a critical 
role in allowing Lystrosaurus to become the most abundant terrestrial vertebrate during these turbulent times.

Materials and Methods
Osteohistology.  Thin sections were prepared by JB-B and AKH using standard procedures38, analysed with 
a Nikon Eclipse 50i Polarizing microscope, a DS-Fi1 digital camera, and processed in the image analysis programs 
NIS Elements D 3.2 and Image J. Further image processing and preparation were undertaken in CorelDraw and 
Adobe Photoshop. The description of osteohistological features and terminology follow Francillon-Vieillot et al.39.

The count of growth marks (Supplementary Appendix 1), which comprise annuli or lines of arrested growth 
(LAGs), was based solely on the observation of the thin sections. Retrocalculations (i.e. estimates of the num-
ber of missing growth marks due to secondary remodelling of the inner, and presumably younger, cortex) were 
not undertaken as there is little consensus on which method is the most appropriate for such calculations. 
Furthermore, the presence of growth marks in Triassic taxa is sporadic and often non-existent, making retro-
calculation ineffectual. Assuming a consistent pattern of growth mark deposition across taxa, the observation 
of three or more growth marks is taken to indicate multi-year growth to reproductive maturity. This was based 
on the observation that some yearling rodents may show up to two growth marks in their bone tissues as some 
cohorts may represent different reproductive events (winter, summer)40. Secondary remodelling is typical of 
larger taxa, particularly in dicynodonts. However, even discounting missing growth marks due to this process, 
Permian taxa still show several growth marks in their cortex prior to a decrease in growth rate. In the Triassic 
Lystrosaurus species, only a single annulus was observed in each of the largest individuals in this study (repre-
senting 100% BSLmax in L. murrayi and 82% BSLmax in L. declivis). A single annulus was present in a few smaller 
and presumably ontogenetically younger individuals. Superimposition of these smaller sections onto the largest 
sections of each species indicated that only one annulus had probably been resorbed by secondary remodelling in 
the largest, presumably ontogenetically oldest, individuals in this study (Supplementary Fig. 4).

Demographics and Ecology of Permo-Triassic Therapsids.  Frequency-size distributions of 
each taxon were tested for deviations from normality, i.e. whether they were right- or left-skewed, reflecting 
under-representation of large or small individuals, respectively, using Shapiro-Wilk’s tests. Comparisons between 
Lystrosaurus species, and between other taxa with Permian, Early Triassic, or Mid-Triassic assemblages, were 
made using Pearson’s chi-squared tests based on 2 ×  2 contingency tables (with Yates correction in cases where 
the number of individuals within one or more cells was <5), with each group divided into numbers of larger 
(>70% BSLmax) and smaller individuals (≤70% BSLmax). This approach is based on observations of the Permian 
and Triassic taxa in this study where a decrease in growth rate is evident by approximately 70% BSLmax (apart from 
Triassic Lystrosaurus). Frequency distributions of ontogenetically older and younger individuals were calculated 
by expressing each individual as a percentage of the total BSL range estimated for a taxon, from
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where BSLi is the focal individual, and BSLmin and BSLmax reflect the minimum and maximum BSL values for the 
focal taxon. BSLmax is simply the largest BSL value observed for any taxon, but BSLmin had to be estimated because 
it is unlikely that the smallest individuals represented by each taxon have actually been recovered from the fossil 
record. Hence, we used allometric relationships between adult and neonate body sizes, such as are gleaned from 
extant vertebrates41, to estimate BSLmin for each taxon. Note that scaling exponents for these allometries differ sig-
nificantly between viviparous (~0.9) and oviparous (~0.5 to 0.6) vertebrates41. However, we found no significant 
differences in resulting trends when either exponent was applied to our data, assuming that all taxa followed the 
same reproductive strategy. Therefore, we report only results based on a scaling exponent of 0.9. We acknowledge 
that more information about reproductive strategies in therapsids would surely improve the accuracy of our 
results. We anticipate that future applications of our approach are likely to answer key questions about reproduc-
tive strategies in other fossil vertebrate groups.

To determine the effects of different life history strategies on survival rates of Permian and Triassic verte-
brates, we simulated ecological dynamics based on hypothetical size-structured life tables and matrix models that 
reflected differences in BSL distributions (Supplementary Appendix 6 and 7). Simulated life tables included 10 
age/size classes (x) corresponding to 10 equally-sized BSL bins (0–10% BSLmax, 10–20%, etc.): note this approach 
assumes linear growth, but due to the low number of growth marks observed in Triassic Lystrosaurus, we could 
not derive parameters for actual growth models. We also found no qualitative differences in analysis of BSL data 
using four (25% increments) or five (20% increments) size bins.

Life tables resembled either of two basic strategies, namely Type 1 (a convex relationship between survivorship 
and size/age) or Type 3 (concave) survivorships (see data in42), reflecting the extremes of a continuum observed 
in modern organisms generally. The former (Type 1) comprises organisms that generally produce few young, 
practice parental care, and suffer greatest mortalities later in life, whereas the latter (Type 3) comprises organisms 
that rely on very high reproductive outputs, allowing for high mortalities amongst juveniles, and low mortality 
rates amongst older, reproductive-age individuals. Survivorship schedules (lx) were calculated from age-specific 
survivorship schedules (gx) generated using the arbitrary formula

+ ρa b
x (2)

where a and b are positive and negative constants, respectively. The gx schedules were then standardized to values 
between 0.05 and 0.9, and converted to lx schedules by setting l0 =  1 and lx + 1 =  gxlx. For negative values of ρ, equa-
tion 2 produces a concave gx, and convex lx, curve, i.e. reflecting Type 1 survivorships; for positive ρ, the gx curve 
is positively asymptotic, and the lx curve is concave, reflecting a Type 3 survivorship.

Fecundity schedules (mx) were also simulated so as to mirror trends observed in extant vertebrates, for which 
mx increases asymptotically with age, before falling after senescence (see data in43). We used the asymptotic 
formula

ρ−a b (3)x

where a and b are constants >1, and 0 < ρ <  1, to simulate mx schedules. Subsequently, we simulated fertility 
schedules (Fx), by standardizing mx schedules to values between 1 and 3 for Type 1 populations, and between 1 
and 20 for Type 3 populations (these maxima resemble realistic estimates for extant animals approaching the size 
of Lystrosaurus – see allometric parameters in43). Stochastic variation in lx, gx, and Fx was set at ±10% of the range 
for each parameter.

Simulations of population growth under a variety of life history, ecological, and environmental conditions, 
mimicking patterns observed in the histological and BSL data, were based on age-structured matrix models 
(Supplementary Appendix 7) derived from the above life tables (see e.g.44,45). Populations with higher survivor-
ship rates and hence longer life expectancies were differentiated from shorter-lived ones by setting ρ in equation 2 
to lower and higher values, respectively, whereby a larger ρ corresponds to a steeper slope and hence higher 
mortality rates especially amongst larger size/age classes (see Supplementary Table 2 and 3). We tested hypoth-
eses relating to breeding strategy as follows: effects of early breeding, introduced by altering the minimum age 
(x) for which Fx >  0 was possible; and effects of enhanced reproductive rates introduced by increasing the max-
imum value for Fx to 5 and 30 for Type 1 and Type 3 populations, respectively. These two hypotheses are central 
to our idea that past populations with shortened life expectancies compensated for this shortfall by increasing 
reproductive outputs, attained either by reaching reproductive maturity at younger ages (or smaller size classes) 
or by increasing the absolute number of offspring (e.g. by having larger clutch sizes and/or more breeding bouts 
per year). Results are reported as means and 95% confidence intervals over 1 000 simulations for each set of 
conditions.

Finally, we explored population dynamics of populations using these various life history strategies 
under different environmental conditions. To this end, we used logistic growth models assuming direct 
density-dependence46, in which the equilibrium density (K) was taken to represent environmental carrying 
capacity. There are key differences between the concepts of equilibrium density and carrying capacity47, but for 
our purposes these variables may be assumed to capture similar aspects of population density dynamics. Two 
types of environments were simulated: a stable environment, in which K varied by ±10% across time intervals 
(t), and a variable environment in which K varied by ± 50%, the latter reflecting the hypothesized stochastic and 
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unpredictable Early Triassic environment. Growth rates (r) for these growth models were derived from the matrix 
models described above, where r =  lambda − 1. However, gx schedules at each time interval were adjusted so as 
to reflect changes in K, using

=g K
K (4)x t

t
,

0

In other words, gx at each time interval increased or decreased by a proportion equal to the proportionate 
change in Kt relative to the original K. Thus, growth rates in these models are dynamic, to a degree reflecting the 
instability of the environments. For each model variant, i.e. life history strategy, results reported here are means 
over 100 time intervals calculated from 1 000 iterations. Extinction rates are calculated as the percentage of sim-
ulations in which population sizes (N) reached <1 individual.

References
1.	 Jablonski, D. Mass extinctions and macroevolution. Paleobiol. 31, 192–210 (2005).
2.	 Burgess, S. D., Bowring, S. A. & Shen, S.-z. High-precision timeline for Earth’s most severe extinction. Proc. Natl. Acad. Sci. USA Biol. 

Sci. 111, 3316–3321 (2014).
3.	 Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. Trophic network models explain instability of Early Triassic terrestrial 

communities. Proc. R. Soc. Lond. B Biol. Sci. 274, 2077–2086 (2007).
4.	 Roopnarine, P. D. & Angielczyk, K. D. The evolutionary palaeoecology of species and the tragedy of the commons. Biol. Lett. doi: 

10.1098/rsbl.2011.0662 (2012).
5.	 Arche, A. & López-Gómez, J. Sudden changes in fluvial style across the Permian-Triassic boundary in the eastern Iberian Ranges, 

Spain: Analysis of possible causes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 229, 104–126 (2005).
6.	 Smith, R. M. H. & Botha-Brink, J. Anatomy of an extinction: sedimentological and taphonomic evidence for drought-induced die-

offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 
(2014).

7.	 Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).
8.	 Rey, K. et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South 

Africa. Gondwana Res, doi: org/10.1016/j.gr.2015.09.008 (2015).
9.	 Roopnarine, P. D. & Angielczyk, K. D. Community stability and selective extinction during the Permian-Triassic mass extinction. 

Science 350, 90–93 (2015).
10.	 Ruta, M., Cisneros, J. C., Liebrecht, T., Tsuji, L. A. & Müller, J. Amniotes through major biological crises: faunal turnover among 

parareptiles and the end-Permian mass extinction. Palaeontology 54, 1117–1137 (2011).
11.	 Ruta, M., Angielczyk, K. D., Fröbisch, J. & Benton, M. J. Decoupling of morphological disparity and taxic diversity during the 

adaptive radiation of anomodont therapsids. Proc. R. Soc. Lond. B Biol. Sci. 280, 20131071 (2013).
12.	 Ruta, M. & Benton, M. J. Calibrated diversity, tree topology and the mother of mass extinctions: the lesson of temnospondyls. 

Palaeontology 51, 1261–1288 (2008).
13.	 Nesbitt, S. J., Barrett, P. M., Werning, S., Sidor, C. A. & Charig, A. J. The oldest dinosaur? A Middle Triassic dinosauriform from 

Tanzania. Biol. Lett. 9, doi: 10.1098/rsbl.2012.0949 (2013).
14.	 Ruta, M., Botha-Brink, J., Mitchell, S. A. & Benton, M. J. The radiation of cynodonts and the ground plan of mammalian 

morphological diversity. Proc. R. Soc. Lond. B Biol. Sci. 280, doi: 10.1098/rspb.2013.1865 (2013).
15.	 Huttenlocker, A. K. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the End-Permian mass 

extinction. PLoS ONE 9, e87553; doi: 10.1371/journal.pone.0087553 (2014).
16.	 Grine, F. E., Forster, C. A., Cluver, M. A. & Georgi, J. A. In Cranial variability, ontogeny, and taxonomy of Lystrosaurus from the Karoo 

Basin of South Africa, Amniote paleobiology: perspectives on the evolution of mammals, birds, and reptiles (eds M. T. Carrano, T. J. 
Gaudin, R. W. Blob & J. R. Wible) 432–503 (University of Chicago Press, 2006).

17.	 Botha, J. & Smith, R. M. H. Lystrosaurus species composition across the Permo–Triassic boundary in the Karoo Basin of South 
Africa. Lethaia 40, 125–137 (2007).

18.	 Rockwood, L. L. Introduction to population ecology. (Blackwell, 2006).
19.	 Botha-Brink, J. & Angielczyk, K. D. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, 

Anomodontia) explain their success before and after the end-Permian extinction? Zool. J. Linn. Soc. 160, 341–365 (2010).
20.	 Huttenlocker, A. K. & Botha-Brink, J. Body size and growth patterns in the therocephalian Moschorhinus kitchingi (Therapsida: 

Eutheriodontia) before and after the end-Permian extinction in South Africa. Paleobiol. 39, 253–277 (2013).
21.	 Huttenlocker, A. & Botha-Brink, J. Growth patterns and the evolution of bone microstructure in Permo-Triassic therocephalians 

(Amniota, Therapsida) of South Africa. PeerJ 2, e325 (2014).
22.	 Hone, D. W., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: what, if anything, is an adult dinosaur? Biol. Lett. 12, 

20150947 (2016).
23.	 Padian, K. & Lamm, E.-T. Bone histology of fossil tetrapods. Advancing methods, analysis, and interpretation. (University of California 

Press, 2013).
24.	 Sookias, R. B., Butler, R. J. & Benson, R. B. J. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of 

trait evolution. Proc. R. Soc. Lond. B Biol. Sci. 279, 2180–2187 (2012).
25.	 Hutton, J. M. Age determination of living Nile crocodiles from the cortical stratification of bone. Copeia 263, 31–39 (1986).
26.	 Castanet, J. et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 

(2004).
27.	 Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. Seasonal bone growth and physiology in endotherms shed light on 

dinosaur physiology. Nature 487, 358–361 (2012).
28.	 Castanet, J. & Smirina, E. Introduction to the Skeletochronological Method in Amphibians and Reptiles. (Masson, 1990).
29.	 Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D. E. & Sánchez-Villagra, M. R. Evolutionary patterns of bone histology 

and bone compactness in xenarthran mammal long bones. PLoS ONE e69275 (2013).
30.	 Lee, A. H. & Werning, S. Sexual maturity in growing dinosaurs does not fit reptilian growth models. Proc. Natl. Acad. Sci. USA Biol. 

Sci. 105, 582–587 (2008).
31.	 Erickson, G. M., Curry Rogers, K., Varricchio, D. J., Norell, M. A. & Xu, X. Growth patterns in brooding dinosaurs reveals the timing 

of sexual maturity in non-avian dinosaurs and genesis of the avian condition. Biol. Lett. 3, 558–561 (2007).
32.	 Sander, P. M. Longbone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiol. 26, 466–488 (2000).
33.	 Botha-Brink, J., Abdala, F. & Chinsamy, A. In The radiation and osteohistology of non-mammaliaform cynodonts, The forerunners of 

mammals: radiation, histology and biology (ed A. Chinsamy) 223–246 (Indiana University Press, 2012).
34.	 Smith, R., Rubidge, B. & van der Walt, M. In Therapsid biodiversity patterns and palaeoenvironments of the Karoo Basin, South Africa, 

Forerunners of mammals: radiation, histology, biology (ed A. Chinsamy-Turan) 31–64 (Indiana University Press, 2012).
35.	 Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction, Science 305, 506–508.



www.nature.com/scientificreports/

9Scientific Reports | 6:24053 | DOI: 10.1038/srep24053

36.	 Ricqlès, A. de, Padian, K., Knoll, F. & Horner, J. R. On the origin of high growth rates in archosaurs and their ancient relatives: 
complementary histological studies on Triassic archosauriforms and the problems of a “phylogenetic signal” in bone histology. Ann 
Paléontol. 94, 57–76 (2008).

37.	 Botha-Brink, J. & Smith, R. M. H. Osteohistology of the Triassic archosauromorphs Prolacerta, Proterosuchus, Euparkeria, and 
Erythrosuchus from the Karoo Basin of South Africa. J. Vert. Paleont. 31, 1238–1254 (2011).

38.	 Chinsamy, A. & Raath, M. A. Preparation of fossil bone for histological examination. Palaeontol. Afr. 29, 3–44 (1992).
39.	 Francillon-Vieillot, H. et al. In Microstructure and mineralization of vertebrate skeletal tissues, Skeletal Biomineralization: Patterns, 

Processes, and Evolutionary Trends Vol. 1 (ed. J. G. Carter) 471–530 (Van Nostrand Reinhold, 1990).
40.	 García-Martínez, R., Marín-Moratalla, N., Jordana, X. & Köhler, M. The ontogeny of bone growth in two species of dormice: 

Reconstructing life history traits. C. R. Palevol 10, 489–498 (2011).
41.	 Hendriks, A. J. & Mulder, C. Scaling of offspring number and mass to plant and animal size: model and meta-analysis. Oecologia 

155, 705–716 (2008).
42.	 Begon, M., Townsend, C. R. & Harper, J. L. Ecology, from individuals to ecosystems, fourth edition. (Blackwell Publishing, 2006).
43.	 Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: perturbation analysis for species with minimal 

demographic data. Ecology 81, 654–665 (2000).
44.	 Akçakaya, H. R. M., Burgman, M. A. & Ginzburg, L. R. Applied population ecology, second edition. (Sinauer Associates, 1999).
45.	 Gotelli, N. J. & Ellison, A. M. A primer of ecological statistics. (Sinauer Associates, Inc, 2004).
46.	 Roughgarden, J. Primer of Ecological Theory. (Prentice Hall, 1998).
47.	 Owen-Smith, N. Demographic determination of the shape of density dependence for three African ungulate populations. Ecol. 

Monogr. 76, 93–109 (2006).
48.	 Cox, C. B. & Angielczyk, K. D. A new endothiodont dicynodont (Therapsda, Anomodontia) from the Permian Ruhuhu Formation 

(Songea Group) of Tanzania and its feeding system. J. Vert. Paleontol. 35, e935388 (2015).

Acknowledgements
We thank the following people for access to specimens: B. Rubidge and B. Zipfel (ESI, SA), R. M. H. Smith 
(Iziko Museums, SA), and E. Butler (NMB, SA). This work was supported by the National Research Foundation 
(UID 91602), the Palaeontological Scientific Trust (PAST) and its Scatterlings of Africa programmes, DST/NRF 
Centre of Excellence in Palaeosciences to JBB; National Science Foundation Doctoral Dissertation Improvement 
Grant Program (NSF-DDIG-1209018) and Postdoctoral Research Fellowships in Biology (NSF-PRFB-1309040) 
to AKH. We thank three anonymous reviewers for their helpful comments. The authors are solely responsible for 
opinions and conclusions presented here.

Author Contributions
J.B.B. designed the project, J.B.B., D.C., A.K.H. and K.D.A. performed the research, D.C. and M.R. performed the 
statistical analyses. All authors wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Botha-Brink, J. et al. Breeding Young as a Survival Strategy during Earth’s Greatest 
Mass Extinction. Sci. Rep. 6, 24053; doi: 10.1038/srep24053 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Breeding Young as a Survival Strategy during Earth’s Greatest Mass Extinction

	Results and Discussion

	Materials and Methods

	Osteohistology. 
	Demographics and Ecology of Permo-Triassic Therapsids. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Osteohistological sections of Permian (a–c) and Triassic (d–f) late subadult or adult therapsids.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Growth mark counts mapped onto a phylogeny of Permo-Triassic therapsids.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Differences in population structure, life expectancy, age at reproductive maturity and fecundity.



 
    
       
          application/pdf
          
             
                Breeding Young as a Survival Strategy during Earth’s Greatest Mass Extinction
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24053
            
         
          
             
                Jennifer Botha-Brink
                Daryl Codron
                Adam K. Huttenlocker
                Kenneth D. Angielczyk
                Marcello Ruta
            
         
          doi:10.1038/srep24053
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep24053
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep24053
            
         
      
       
          
          
          
             
                doi:10.1038/srep24053
            
         
          
             
                srep ,  (2016). doi:10.1038/srep24053
            
         
          
          
      
       
       
          True
      
   




