25 research outputs found

    Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions.

    Get PDF
    KCNQ2 and KCNQ3 K+ channel subunits underlie the muscarinic-regulated K+ current (I(KM)), a widespread regulator of neuronal excitability. Mutations in KCNQ2- or KCNQ3-encoding genes cause benign familiar neonatal convulsions (BFNCs), a rare autosomal-dominant idiopathic epilepsy of the newborn. In the present study, we have investigated, by means of electrophysiological, biochemical, and immunocytochemical techniques in transiently transfected cells, the consequences prompted by a BFNC-causing 1-bp deletion (2043deltaT) in the KCNQ2 gene; this frameshift mutation caused the substitution of the last 163 amino acids of the KCNQ2 C terminus and the extension of the subunit by additional 56 residues. The 2043deltaT mutation abolished voltage-gated K+ currents produced upon homomeric expression of KCNQ2 subunits, dramatically reduced the steady-state cellular levels of KCNQ2 subunits, and prevented their delivery to the plasma membrane. Metabolic labeling experiments revealed that mutant KCNQ2 subunits underwent faster degradation; 10-h treatment with the proteasomal inhibitor MG132 (20 microm) at least partially reversed such enhanced degradation. Co-expression with KCNQ3 subunits reduced the degradation rate of mutant KCNQ2 subunits and led to their expression on the plasma membrane. Finally, co-expression of KCNQ2 2043deltaT together with KCNQ3 subunits generated functional voltage-gated K+ currents having pharmacological and biophysical properties of heteromeric channels. Collectively, the present results suggest that mutation-induced reduced stability of KCNQ2 subunits may cause epilepsy in neonates

    A Novel Hyperekplexia-causing Mutation in the Pre-transmembrane Segment 1 of the Human Glycine Receptor α1 Subunit Reduces Membrane Expression and Impairs Gating by Agonists

    Get PDF
    In this study, we have compared the functional consequences of three mutations (R218Q, V260M, and Q266H) in the alpha(1) subunit of the glycine receptor (GlyRA1) causing hyperekplexia, an inherited neurological channelopathy. In HEK-293 cells, the agonist EC(50s) for glycine-activated Cl(-) currents were increased from 26 microm in wtGlyRA1, to 5747, 135, and 129 microm in R218Q, V260M, and Q266H GlyRA1 channels, respectively. Cl(-) currents elicited by beta-alanine and taurine, which behave as agonists at wtGlyRA1, were decreased in V260M and Q266H mutant receptors and virtually abolished in GlyRA1 R218Q receptors. Gly-gated Cl(-) currents were similarly antagonized by low concentrations of strychnine in both wild-type (wt) and R218Q GlyRA1 channels, suggesting that the Arg-218 residue plays a crucial role in GlyRA1 channel gating, with only minor effects on the agonist/antagonist binding site, a hypothesis supported by our molecular model of the GlyRA1 subunit. The R218Q mutation, but not the V260M or the Q266H mutation, caused a marked decrease of receptor subunit expression both in total cell lysates and in isolated plasma membrane proteins. This decreased expression does not seem to explain the reduced agonist sensitivity of GlyRA1 R218Q channels since no difference in the apparent sensitivity to glycine or taurine was observed when wtGlyRA1 receptors were expressed at levels comparable with those of R218Q mutant receptors. In conclusion, multiple mechanisms may explain the dramatic decrease in GlyR function caused by the R218Q mutation, possibly providing the molecular basis for its association with a more severe clinical phenotype

    Understanding Ovarian Hypo-Response to Exogenous Gonadotropin in Ovarian Stimulation and Its New Proposed Marker—The Follicle-To-Oocyte (FOI) Index

    Get PDF
    Hypo-responsiveness to controlled ovarian stimulation is an undervalued topic in reproductive medicine. This phenomenon manifests as a low follicles output rate (FORT) with a discrepancy between the relatively low number of pre-ovulatory follicles which develop following ovarian stimulation as compared to the number of antral follicles available at the start of stimulation. The pathophysiology mechanisms explaining the ovarian resistance to gonadotropin stimulation are not fully understood, but the fact that both hypo-responders and normal responders share similar phenotypic characteristics suggests a genotype-based mechanism. Indeed, existing evidence supports the association between specific gonadotropin and their receptor polymorphisms and ovarian hypo-response. Apart from genotypic trait, environmental contaminants and oxidative stress might also be involved in the hypo-response pathogenesis. The ratio between the number of oocytes collected at the ovum pick up and the number of antral follicles at the beginning of OS [Follicle to oocyte index (FOI)] is proposed as a novel parameter to assess the hypo-response. Compared with traditional ovarian reserve markers, FOI might reflect most optimally the dynamic nature of follicular growth in response to exogenous gonadotropin. In this review, we contextualize the role of FOI as a parameter to identify this condition, discuss the underlying mechanisms potentially implicated in the pathogenesis of hypo-response, and appraise possible the treatment strategies to overcome hyper-responsiveness to gonadotropin stimulation

    Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study)

    Get PDF
    Background. Few data are reported in the literature about the outcome of patients with severe extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) infections treated with ceftolozane/tazobactam (C/T), in empiric or definitive therapy.Methods. A multicenter retrospective study was performed in Italy (June 2016-June 2019). Successful clinical outcome was defined as complete resolution of clinical signs/symptoms related to ESBL-E infection and lack of microbiological evidence of infection. The primary end point was to identify predictors of clinical failure of C/T therapy.Results. C/T treatment was documented in 153 patients: pneumonia was the most common diagnosis (n = 46, 30%), followed by 34 cases of complicated urinary tract infections (22.2%). Septic shock was observed in 42 (27.5%) patients. C/T was used as empiric therapy in 46 (30%) patients and as monotherapy in 127 (83%) patients. Favorable clinical outcome was observed in 128 (83.7%) patients; 25 patients were considered to have failed C/T therapy. Overall, 30-day mortality was reported for 15 (9.8%) patients. At multivariate analysis, Charlson comorbidity index >4 (odds ratio [OR], 2.3; 95% confidence interval [CI], 1.9-3.5; P = .02), septic shock (OR, 6.2; 95% CI, 3.8-7.9; P < .001), and continuous renal replacement therapy (OR, 3.1; 95% CI, 1.9-5.3; P = .001) were independently associated with clinical failure, whereas empiric therapy displaying in vitro activity (OR, 0.12; 95% CI, 0.01-0.34; P < .001) and adequate source control of infection (OR, 0.42; 95% CI, 0.14-0.55; P < .001) were associated with clinical success.Conclusions. Data show that C/T could be a valid option in empiric and/or targeted therapy in patients with severe infections caused by ESBL-producing Enterobacterales. Clinicians should be aware of the risk of clinical failure with standard-dose C/T therapy in septic patients receiving CRRT

    Compensation of Nuisance Factors for Speaker and Language Recognition

    No full text

    A Complex Radiomic Signature in Luminal Breast Cancer from a Weighted Statistical Framework: A Pilot Study

    Get PDF
    Radiomics is rapidly advancing in precision diagnostics and cancer treatment. However, there are several challenges that need to be addressed before translation to clinical use. This study presents an ad-hoc weighted statistical framework to explore radiomic biomarkers for a better characterization of the radiogenomic phenotypes in breast cancer. Thirty-six female patients with breast cancer were enrolled in this study. Radiomic features were extracted from MRI and PET imaging techniques for malignant and healthy lesions in each patient. To reduce within-subject bias, the ratio of radiomic features extracted from both lesions was calculated for each patient. Radiomic features were further normalized, comparing the z-score, quantile, and whitening normalization methods to reduce between-subjects bias. After feature reduction by Spearman’s correlation, a methodological approach based on a principal component analysis (PCA) was applied. The results were compared and validated on twenty-seven patients to investigate the tumor grade, Ki-67 index, and molecular cancer subtypes using classification methods (LogitBoost, random forest, and linear discriminant analysis). The classification techniques achieved high area-under-the-curve values with one PC that was calculated by normalizing the radiomic features via the quantile method. This pilot study helped us to establish a robust framework of analysis to generate a combined radiomic signature, which may lead to more precise breast cancer prognosis

    Chromosome Instability in Pony of Esperia Breed Naturally Infected by Intestinal Strongylidae

    Get PDF
    The Pony of Esperia is an Italian autochthonous horse breed reared in the wild on the Aurunci and Ausoni Mountains. Currently, it is considered an endangered breed, as its population consists of 1623 animals. It is therefore essential to identify all aspects that can improve the management and economy of its breeding, favoring its diffusion. In this paper, the effects of intestinal strongyle infection on the chromosome stability of peripheral blood lymphocytes (PBLs) was evaluated through aneuploidy and chromosome aberration (gap, chromatid and chromosome breaks, and the number of abnormal cells) test. Statistical difference in the mean values of aneuploidy, cells with chromosome abnormalities, and chromosome and chromatid breaks were observed between ponies with high fecal egg counts (eggs per gram > 930) and those with undetectable intestinal strongylosis. The causes of this phenomenon and possible repercussions on the management of Pony of Esperia are discussed in the paper

    A Framework of Analysis to Facilitate the Harmonization of Multicenter Radiomic Features in Prostate Cancer

    No full text
    Pooling radiomic features coming from different centers in a statistical framework is challenging due to the variability in scanner models, acquisition protocols, and reconstruction settings. To remove technical variability, commonly called batch effects, different statistical harmonization strategies have been widely used in genomics but less considered in radiomics. The aim of this work was to develop a framework of analysis to facilitate the harmonization of multicenter radiomic features extracted from prostate T2-weighted magnetic resonance imaging (MRI) and to improve the power of radiomics for prostate cancer (PCa) management in order to develop robust non-invasive biomarkers translating into clinical practice. To remove technical variability and correct for batch effects, we investigated four different statistical methods (ComBat, SVA, Arsynseq, and mixed effect). The proposed approaches were evaluated using a dataset of 210 prostate cancer (PCa) patients from two centers. The impacts of the different statistical approaches were evaluated by principal component analysis and classification methods (LogitBoost, random forest, K-nearest neighbors, and decision tree). The ComBat method outperformed all other methods by achieving 70% accuracy and 78% AUC with the random forest method to automatically classify patients affected by PCa. The proposed statistical framework enabled us to define and develop a standardized pipeline of analysis to harmonize multicenter T2W radiomic features, yielding great promise to support PCa clinical practice
    corecore