2,261 research outputs found

    Combining interactive GIS tools and expert knowledge in validation of tree species models

    Get PDF
    Poster presented at XIII Congreso Forestal Mundial. FAO, Buenos Aires (Argentina). 18-25 Oct 200

    Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis

    Full text link
    The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204 (2004)] suggest that the impurity does not contribute significantly to the dynamics of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. The (r,τr,\tau) entropy, which measures the amount of information generated by unit time at different scales τ\tau of time and rr of the observable, is numerically computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy impurity for various values of the energy density Ï”\epsilon (energy per degree of freedom) of the system and some values of the impurity mass MM. Results obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.

    Density-dependent interactions and structure of charged colloidal dispersions in the weak screening regime

    Get PDF
    We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corresponds to a non-monotonic density dependence of the colloid effective charge and the mean interparticle interaction energy. Our findings are corroborated by similar observations from primitive model computer simulations of salt-free colloidal suspensions.Comment: Revised version, accepted to Phys. Rev. Let

    Second-order estimates of the self-consistent type for viscoplastic polycrystals

    Get PDF
    The ‘second–order’ homogenization procedure of Ponte Castañeda is used to propose new estimates of the self–consistent type for the effective behaviour of viscoplastic polycrystals. This is accomplished by means of appropriately generated estimates of the self–consistent type for the relevant ‘linear thermoelastic comparison composite’, in the homogenization procedure. The resulting nonlinear self–consistent estimates are the only estimates of their type to be exact to second order in the heterogeneity contrast, which, for polycrystals, is determined by the grain anisotropy. In addition, they satisfy the recent bounds of Kohn and Little for two–dimensional power–law polycrystals, which are known to be significantly sharper than the Taylor bound at large grain anisotropy. These two features combined, suggest that the new self–consistent estimates, obtained from the second–order procedure, may be the most accurate to date. Direct comparison with other self–consistent estimates, including the classical incremental and secant estimates, for the special case of power–law creep, appear to corroborate this observation

    Path Integral Approach to Strongly Nonlinear Composite

    Full text link
    We study strongly nonlinear disordered media using a functional method. We solve exactly the problem of a nonlinear impurity in a linear host and we obtain a Bruggeman-like formula for the effective nonlinear susceptibility. This formula reduces to the usual Bruggeman effective medium approximation in the linear case and has the following features: (i) It reproduces the weak contrast expansion to the second order and (ii) the effective medium exponent near the percolation threshold are s=1s=1, t=1+Îșt=1+\kappa, where Îș\kappa is the nonlinearity exponent. Finally, we give analytical expressions for previously numerically calculated quantities.Comment: 4 pages, 1 figure, to appear in Phys. Rev.

    Second-order estimates of the self-consistent type for viscoplastic polycrystals

    Get PDF
    The ‘second–order’ homogenization procedure of Ponte Castañeda is used to propose new estimates of the self–consistent type for the effective behaviour of viscoplastic polycrystals. This is accomplished by means of appropriately generated estimates of the self–consistent type for the relevant ‘linear thermoelastic comparison composite’, in the homogenization procedure. The resulting nonlinear self–consistent estimates are the only estimates of their type to be exact to second order in the heterogeneity contrast, which, for polycrystals, is determined by the grain anisotropy. In addition, they satisfy the recent bounds of Kohn and Little for two–dimensional power–law polycrystals, which are known to be significantly sharper than the Taylor bound at large grain anisotropy. These two features combined, suggest that the new self–consistent estimates, obtained from the second–order procedure, may be the most accurate to date. Direct comparison with other self–consistent estimates, including the classical incremental and secant estimates, for the special case of power–law creep, appear to corroborate this observation

    A Rational Approach to Cryptographic Protocols

    Full text link
    This work initiates an analysis of several cryptographic protocols from a rational point of view using a game-theoretical approach, which allows us to represent not only the protocols but also possible misbehaviours of parties. Concretely, several concepts of two-person games and of two-party cryptographic protocols are here combined in order to model the latters as the formers. One of the main advantages of analysing a cryptographic protocol in the game-theory setting is the possibility of describing improved and stronger cryptographic solutions because possible adversarial behaviours may be taken into account directly. With those tools, protocols can be studied in a malicious model in order to find equilibrium conditions that make possible to protect honest parties against all possible strategies of adversaries

    Homogenization-Based Predictions for Texture Evolution in Halite

    Get PDF
    International audienceThe “variational” homogenization method developed by deBotton and Ponte Castaneda [2] is used here to predict texture development in halite polycrystals at room and high temperatures accounting for hardening and grain shape changes. The new predictions are compared with those of the Taylor and “tangent” model of Molinari et al. [5] for uniaxial tension and compression. The predictions of the “variational” model are found to be intermediate between the Taylor and “tangent” predictions, although not too different from either, as a consequence of the relatively high isotropy of the halite single crystal grains
    • 

    corecore