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Second-order estimates of the self-consistent
type for viscoplastic polycrystals

By M. Bornert1 and P. Ponte Casta ñ eda2

1Laboratoire de Mécanique des Solides, Centre commun X/ENSMP/ENPC/CNRS,
Ecole Polytechnique, F 91128 Palaiseau Cedex, France

2Department of Mechanical Engineering and Applied Mechanics, University of
Pennsylvania, Philadelphia, PA 19104-6315, USA

The ‘second-order’ homogenization procedure of Ponte Castañeda is used to propose
new estimates of the self-consistent type for the effective behaviour of viscoplastic
polycrystals. This is accomplished by means of appropriately generated estimates of
the self-consistent type for the relevant ‘linear thermoelastic comparison composite’,
in the homogenization procedure. The resulting nonlinear self-consistent estimates
are the only estimates of their type to be exact to second order in the heterogeneity
contrast, which, for polycrystals, is determined by the grain anisotropy. In addition,
they satisfy the recent bounds of Kohn & Little for two-dimensional power-law poly-
crystals, which are known to be significantly sharper than the Taylor bound at large
grain anisotropy. These two features combined, suggest that the new self-consistent
estimates, obtained from the second-order procedure, may be the most accurate to
date. Direct comparison with other self-consistent estimates, including the classical
incremental and secant estimates, for the special case of power-law creep, appear to
corroborate this observation.

Keywords: rate-dependent plasticity; self-consistent estimates; heterogeneous
materials; creep of polycrystals; second-order theory; nonlinear homogenization

1. Introduction

In spite of being a classical problem (Taylor 1938), the theoretical prediction of the
effective response of plastic and viscoplastic polycrystals is still very much open.
This is because the so-called ‘classical’ methods have been found to tend to over-
estimate the effective response, especially at large heterogeneity and nonlinearity
(see, for example, Gilormini (1995) for the analogous problem of two-phase nonlin-
ear composites). This paper is concerned with the application of a recently developed
nonlinear homogenization method (Ponte Castañeda 1996), to estimate the effective
flow stress of viscoplastic polycrystals. The method requires the computation of the
effective response of a fictitious ‘linear thermoelastic comparison polycrystal’ as an
intermediate step, which is accomplished by means of the self-consistent estimates
of Laws (1973) and Willis (1981).

The resulting self-consistent estimates for the nonlinear viscoplastic polycrystals
have the unique property of being exact to second order in the heterogeneity con-
trast. In other words, they agree to second order exactly in a suitable measure of
the heterogeneity, which in the case of polycrystals is related to the grain anisotropy,
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with the asymptotic results of Suquet & Ponte Castañeda (1993) for weakly hetero-
geneous systems. They are, in fact, the first estimates of the self-consistent type for
nonlinear polycrystals to have this property, which is widely known to hold for the
corresponding linear-elastic estimates. In addition, the new self-consistent estimates
will be shown to satisfy a recently established bound (Kohn & Little 1999), for a cer-
tain class of model two-dimensional polycrystals, which is known to be significantly
more restrictive than the corresponding Taylor and Hashin–Shtrikman bounds at
large grain anisotropy (Dendievel et al . 1991; deBotton & Ponte Castañeda 1995).
In fact, the Kohn–Little bound scales with the square root of the grain-anisotropy
parameter, whereas the Taylor and Hashin–Shtrikman bounds scale linearly with
this parameter. These two properties combined—that they are exact for small grain
anisotropy and that they satisfy the Kohn–Little bound at large grain anisotropy—
strongly suggest that these new self-consistent estimates may be the most accurate
to date. That this may indeed be the case will be argued by direct comparison with
the classical ‘incremental’ and ‘secant’ methods of Hill (1965; see also Hutchinson
1976) and Berveiller & Zaoui (1979), respectively, as well as with other more recent
methods including the ‘tangent’ method of Molinari et al . (1987) and the related
‘affine’ method proposed by Zaoui & Masson (1998) and independently by P. Suquet
(1996, personal communication). Comparisons will also be carried out with the vari-
ational self-consistent estimates of Ponte Castañeda & Nebozhyn (1997), which have
already been found to satisfy both the Taylor and Kohn–Little bounds.

2. Effective behaviour of viscoplastic polycrystals

A polycrystal is an aggregate of a large number of perfectly bonded single-crystal
grains with varying orientations. It is assumed to occupy a region in space, Ω, and
can be thought of as an N -phase heterogeneous material, where each phase is defined
as the subregion Ω(r) (r = 1, . . . , N) occupied by all grains of a given orientation,
as defined by a rotation tensor, Q(r), relative to a reference crystal with known ori-
entation. Each grain is assumed to undergo viscoplastic deformation on a set of K
preferred crystallographic slip systems. These are defined by the second-order tensors

μ
(r)
(k) = 1

2(n(r)
(k) ⊗ m

(r)
(k) + m

(r)
(k) ⊗ n

(r)
(k)),

where the unit vectors n
(r)
(k) and m

(r)
(k) denote the normal to the slip plane and the slip

direction in the kth (k = 1, . . . , K) system, respectively, for each grain orientation r
(r = 1, . . . , N). The symbol ⊗ denotes the dyadic product. Note that

μ
(r)
(k) = Q(r)Tμ(k)Q

(r),

where the μ(k) define the slip systems of the reference crystal.
The resolved shear stress on the kth slip systems of grains with orientation r is

defined by

τ
(r)
(k) = σ · μ

(r)
(k), (2.1)

so that, neglecting elastic effects, the strain rate, ε, and the stress, σ, in these grains
are related by

ε =
∂u(r)

∂σ
, u(r)(σ) =

K∑
k=1

φ(k)(τ
(r)
(k)), (2.2)
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where u(r) is the stress potential of the crystals with orientation r, defined in terms
of the slip potentials φ(k), typically assumed to be convex. In these relations, the dot
denotes the inner product of two second-order tensors (e.g. σ · μ = σijμij).

For reasons to be discussed in the following section, it is preferable to work with the
dissipation potentials w(r), which are the Legendre transforms of the stress potentials
u(r), such that

w(r)(ε) = (u(r))∗(ε) = max
σ

{σ · ε − u(r)(σ)}. (2.3)

Of course, ε and σ are related by

σ =
∂w(r)

∂ε
, (2.4)

which is the inverse of (2.2).
Given the dissipation potentials w(r) for the various grain orientations, the corre-

sponding dissipation potential for the polycrystal may be written

w(x, ε) =
N∑

r=1

χ(r)(x)w(r)(ε), (2.5)

where the characteristic function χ(r) is equal to one if the position vector x is
inside a grain with orientation r (i.e. x ∈ Ω(r)) and zero otherwise. The volume
averages, 〈·〉 and 〈·〉(r), are defined over the polycrystal (Ω) and over grains with
orientation r (Ω(r)), respectively, so that, for example, the scalars c(r) = 〈χ(r)〉 serve
to characterize the crystallographic texture of the polycrystal.

Then, assuming that the size of the typical grain is small relative to the size of the
specimen under consideration, the effective viscoplastic response of the polycrystal
may be written in the form

σ̄ =
∂W̃

∂ε̄
, (2.6)

where

W̃ (ε̄) = min
ε∈K(ε̄)

〈w(x, ε)〉 = min
ε∈K(ε̄)

N∑
r=1

c(r)〈w(r)(ε)〉(r), (2.7)

is the effective dissipation potential for the polycrystal, σ̄ = 〈σ〉 and ε̄ = 〈ε〉 are
the average stress and the average strain rate in the polycrystal, and K is the set of
kinematically admissible strains:

K(ε̄) = {ε | there is v with ε = 1
2 [∇v + (∇v)T] in Ω, v = ε̄x on ∂Ω}. (2.8)

3. Second-order estimates for viscoplastic polycrystals

As already mentioned in § 1, the second-order procedure was proposed by Ponte
Castañeda (1996) to generate estimates for the effective behaviour of nonlinear com-
posites that have the distinctive property of being exact to second order in the con-
trast. This is a particularly useful property for materials such as face-centred cubic
polycrystals, which, because of the relatively low degree of anisotropy in the grains,
exhibit fairly small levels of heterogeneity. However, as already demonstrated empir-
ically by Ponte Castañeda (1996) for two-phase composites, the second-order proce-
dure also seems to deliver accurate results at high contrast, for example, for rigidly
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reinforced systems. In this section, an abbreviated derivation of the second-order pro-
cedure is given, together with an application to the computation of self-consistent
estimates for the class of viscoplastic polycrystals described in § 2.

The basis for the second-order procedure is the first-order Taylor formula (with
remainder) for the phase potentials w(r). Introducing reference strains ε̄(r), the Taylor
formula for w(r) about ε̄(r) is given by

w(r)(ε) = w(r)(ε̄(r)) + ρ(r) · (ε − ε̄(r)) + 1
2(ε − ε̄(r)) · L(r)(ε − ε̄(r)), (3.1)

where ρ(r) and L(r) physically correspond to an internal stress and a tangent modulus
tensor, respectively, with components

ρ
(r)
ij =

∂w(r)

∂εij
(ε̄(r)) and L

(r)
ijkl =

∂2w(r)

∂εij∂εkl
(γ(r)), (3.2)

respectively. Note that L(r) depends on the strain

γ(r) = λ(r)ε̄(r) + (1 − λ(r))ε,

where λ(r) depends on ε and is such that 0 < λ(r) < 1.
It then follows from equation (2.7)—by making the approximation that the refer-

ence strains, γ(r) = γ̄(r), are constant in each phase—that the effective potential,
W̃ , of the nonlinear composite may be estimated as

W̃ (ε̄) ≈
N∑

r=1

c(r)[w(r)(ε̄(r)) − ρ(r) · ε̄(r) + 1
2 ε̄(r) · L(r)ε̄(r)] + Ψ̃ , (3.3)

where

Ψ̃ = min
ε∈K(ε)

〈1
2ε · Lε − l · ε〉. (3.4)

In this last relation, use has been made of the definitions:

l(r) = L(r)ε̄(r) − ρ(r) (3.5)

and

l(x) =
N∑

r=1

χ(r)(x)l(r), L(x) =
N∑

r=1

χ(r)(x)L(r). (3.6)

Note that the variational problem Ψ̃ , defined by (3.4), corresponds to a thermoelastic
polycrystal, as made evident by the Euler–Lagrange equations:

(Lijklvk,l − lij),j = 0 in Ω, vi = ε̄ijxj on ∂Ω. (3.7)

It follows that the approximation (3.3) for the effective potential, W̃ , of the nonlin-
ear polycrystal is easier to compute than the corresponding exact expression (2.7),
because it requires the solution of a linear problem instead of a nonlinear one. Thus,
given an estimate for Ψ̃ , the expression (3.3) provides a corresponding estimate for
W̃ , for all choices of the ε̄(r) and γ̄(r).

The prescriptions consisting in setting

ε̄(r) = γ̄(r) = 〈ε〉(r), (3.8)

where ε is the strain in the thermoelastic comparison composite, were proposed
by Ponte Castañeda (1996), based on the physical intuition that the strain, ε, in
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phase r would oscillate about its average, ε̄(r), in phase r, in such a way that large
deviations would only be expected in regions of relatively small measure. A more
rigorous justification for these prescriptions has been given by Ponte Castañeda &
Willis (1999), who have shown that the resulting second-order estimates can be given
a stationary variational interpretation.

The prescription (3.8) for the ε̄(r), also allows further simplification of the estimate
(3.3) for W̃ , as has been shown by Ponte Castañeda & Suquet (1998). In fact, the
Hill condition for the thermoelastic comparison composite ensures that:

〈ε · (Lε − l)〉 = ε̄ · 〈Lε − l〉, (3.9)

which, using the definition (3.5) for the polarizations l(r), leads to

Ψ̃ = 1
2

N∑
r=1

c(r)[ρ(r) · (ε̄ + 〈ε〉(r)) + (〈ε〉(r) − ε̄(r)) · L(r)ε̄ − 〈ε〉(r) · L(r)ε̄(r)]. (3.10)

This result, combined with the prescription (3.8), can be used to rewrite the estimate
(3.3) in the simpler form

W̃ (ε̄) =
N∑

r=1

c(r)
{

w(r)(ε̄(r)) +
1
2

∂w(r)

∂ε
(ε̄(r)) · (ε̄ − ε̄(r))

}
, (3.11)

where the ε̄(r) are determined by the prescriptions (3.8) and the approximate equality
has been replaced by an exact equality for convenience.

It is also possible to work analogously with a Taylor expansion of the stress poten-
tials, u(r), to generate a corresponding estimate for the effective stress potential, Ũ .
Unfortunately, the estimate for Ũ is not the Legendre dual of estimate (3.11) for W̃ ,
and is therefore not equivalent to it. As suggested in Ponte Castañeda (1996), the
expansion based on the dissipation potentials is preferred in plasticity, as a conse-
quence of the fact that, for the physical nonlinearity present in plasticity and creep,
the Taylor expansions on the dissipation potentials are expected to be more accurate
than the corresponding expansions on the stress potentials. More details on this issue
will be given in § 4.

Given the simplified form (3.11) for W̃ , the implementation of the second-order
procedure now only requires estimates for the phase averages, ε̄(r), of the strain field
in the variational thermoelastic problem (3.4), or, equivalently, in the boundary-value
problem (3.7). Since this problem is linear, the principle of superposition ensures that
the phase averages, ε̄(r), can be given the form (Laws 1973):

ε̄(r) = A(r)ε̄ − a(r), (3.12)

where the A(r) and a(r) are the relevant fourth- and second-order localization tensors,
respectively. Self-consistent estimates for these tensors have been given by Laws
(1973) and Willis (1981). They can be written in the forms:

A(r) = [L(r) + L̃�]−1P̃ −1 (3.13)

and

a(r) = [L(r) + L̃�]−1
[ N∑

s=1

c(s)(A(s))Tl(s) − l(r)
]
. (3.14)
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In these relations, L̃� = P̃ −1−L̃ is the constraint tensor defined by Hill (1965), where
L̃ is the self-consistent estimate for the effective modulus tensor which is obtained
as the solution of the implicit equation

[L̃ + L̃�]−1 =
N∑

s=1

c(s)[L(s) + L̃�]−1, (3.15)

also involving L̃�. It is useful to recall that, while the derivation of Laws (1973) was
based on the classical interpretation of the self-consistent method, in terms of the
solution of the problem of an inclusion embedded in the effective medium, the more
general derivation of Willis (1981) made use of the Hashin–Shtrikman variational
principles allowing a more rigorous (i.e. variational) interpretation of the result in
terms of two-point correlation functions. In the first case, the tensor P̃ is associated
with the solution of an ellipsoidal inclusion of given shape in an infinite matrix with
modulus tensor L̃. In the second, P̃ depends on the shape of the two-point correlation
functions (see Willis 1981).

The second-order estimates (3.11) hold for fairly general classes of viscoplastic
polycrystals. In particular, they are able to account for different power-law exponents
(or even more general flow rules) for different types of slip systems. In addition,
elastic, hardening and texture evolution effects can, and should, be included for
realistic modelling of metals (see Asaro & Needleman 1985). However, results will
be presented here only for the special case of power-law creep, neglecting elastic,
hardening and texture effects, since the objective in this short paper is to compare
the second-order estimates with earlier estimates. More realistic applications will be
given elsewhere.

4. Application to model power-law polycrystals

The results of § 3 will be used here to determine the effective behaviour of a special
class of polycrystals consisting of columnar orthorhombic grains, such that the grains
are cylindrical in shape, and their symmetry axes are all aligned with the x3-axis.
When such polycrystals are loaded in antiplane strain, only two slip systems can be
activated. They are those defined by

μ(1) = 1
2(e1 ⊗ e3 + e3 ⊗ e1) and μ(2) = 1

2(e2 ⊗ e3 + e3 ⊗ e2), (4.1)

and the problem becomes two-dimensional, where the stress, σ, and strain rate, ε,
are characterized by two-dimensional vectors (with components σ13, σ23 and ε13, ε23,
respectively), and the modulus tensor, L, by two-dimensional, symmetric, second-
order tensors (with 2L1313 and 2L2323 for the diagonal entries and 2L1323 for the
off-diagonal entry). In addition, the constitutive behaviour of the constituent grains
will be assumed to be of the power-law type (e.g. Hutchinson 1976), so that the slip
potentials in expression (2.2) will be taken to be of the form

φ(k)(τ) =
(τ0)(k)

n + 1

( |τ |
(τ0)(k)

n+1

, (4.2)

where n � 1 is the strain-rate sensitivity, and (τ0)(1) and (τ0)(2) denote the flow
stresses associated with the two slip systems defined by (4.1). Note that the limit
as n tends to ∞ is of special interest, as it corresponds to a rigid ideally plastic
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polycrystal. A local dissipation potential may then be defined for the grains via
relations (2.2), (2.3) and (4.2). Under antiplane strain conditions, it reduces to

w(r)(ε) =
n

n + 1
[(τ0)(1)|ε13|1+(1/n) + (τ0)(2)|ε23|1+(1/n)]. (4.3)

It follows, by assuming further that the statistical distribution of the grains in the
transverse plane is isotropic both in space and orientation, that the polycrystal will
exhibit isotropic properties in the plane. Therefore, under antiplane strain conditions,
the effective behaviour of the polycrystal is determined by

W̃ (ε̄) =
n

n + 1
τ̃0(γ̄e)1+(1/n), (4.4)

where γ̄e = [ε̄2
13 + ε̄2

23]
1/2 and τ̃0 is the effective flow stress of the polycrystal.

The second-order estimates of the self-consistent type are obtained from expres-
sion (3.11), where the phase-average strains are obtained by solving equations (3.12)–
(3.15) simultaneously for the ε̄(r). It is emphasized that the variables L(r) and l(r),
as defined by (3.2) and (3.5), respectively, are dependent on ε̄(r), and therefore the
above-mentioned set of equations are implicit on the ε̄(r) and are solved by itera-
tion. Note that L̃ is defined by relation (3.15), which is also implicit in L̃ and must
be solved by iteration. Noting that the two-point correlation functions for the dis-
tribution of the grain orientations within the polycrystal have been assumed to be
isotropic in the plane (this is the so-called ‘equiaxed grain’ hypothesis), the rele-
vant components of the tensor P̃ are identical to those given in eqns (4.5) of Ponte
Castañeda & Nebozhyn (1997).

Some sample second-order self-consistent (SC) predictions for the effective flow
stress, τ̃0, are presented in figures 1 and 2 for various values of the nonlinearity
exponent n, and the grain anisotropy parameter M = (τ0)(2)/(τ0)(1). (An aggregate
of 100 grain orientations was used to generate an isotropic texture in the trans-
verse plane.) These predictions are compared against the Taylor and Sachs upper
and lower bounds, the Hashin–Shtrikman (HS) upper bound of deBotton & Ponte
Castañeda (1995) and the upper bound of Kohn & Little (1999). (Explicit expres-
sions for the Taylor, Sachs and Kohn–Little bounds, as well as numerical results
for the HS bounds, have been given by Ponte Castañeda & Nebozhyn (1997) for
this case.) The new SC estimates are also compared against the classical ‘incremen-
tal’ SC estimates of Hill (1965) and Hutchinson (1976), the ‘secant’ SC estimate of
Berveiller & Zaoui (1979), the ‘tangent’ (full anisotropic version) SC estimates of
Molinari et al . (1987), the ‘affine’ SC estimate of Zaoui & Masson (1998) and P.
Suquet (1996, personal communication), as well as the ‘variational’ SC estimates of
Ponte Castañeda & Nebozhyn (1997).

In figure 1a, b, results are shown for the various bounds and estimates for the
effective flow stress τ̃0 as functions of the nonlinearity exponent, n, at fixed values of
the grain anisotropy (M = 1 and 3, respectively). For M = 1, all the results—bounds
and SC estimates—are in close agreement for n close to 1. The reason is that a two-
dimensional linear material with square symmetry is known to be isotropic, and
the polycrystal then becomes a homogeneous isotropic material with shear modulus
proportional to (τ0)(1). For M = 3, all the SC estimates agree in the limit as n
approaches 1, but they become increasingly different as n increases. The following
additional observations can be made.
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Figure 1. Comparison of the new second-order self-consistent estimates with various bounds and
other self-consistent estimates for the effective flow stress τ̃0, as functions of n. Values of the
grain anisotropy: (a) M = (τ0)(2)/(τ0)(1) = 1; (b) M = (τ0)(2)/(τ0)(1) = 3.

1. For low grain anisotropy (M = 1), the Taylor upper bound is sharper than
the Kohn–Little bound. On the other hand, for the larger grain anisotropy
(M = 3), the Kohn–Little bound improves on the Taylor bound for all values
of n.

2. For M = 3, the ‘incremental’ SC estimate is seen to violate the Kohn–Little
upper bound for values of n � 10.

3. The rest of the SC estimates appear to satisfy the upper and lower bounds up
to fairly large values of n. (Because of numerical error, in some cases it was
not possible to generate results for n tending to ∞.) In general, the ‘second-
order’ SC estimates are the least stiff, with the ‘tangent’, ‘affine’ and ‘vari-
ational’ following in order of increasing stiffness. However, the ‘tangent’ SC
estimates become extremely soft, tending to the Sachs lower bound, in the
limit as n → ∞.

4. Two sets of results are shown here for the ‘second-order’ SC estimates: those
obtained from the above-described dissipation potential formulation; and the
corresponding estimates from the dual stress potential formulation (the latter
are labelled U in figure 1 and appear as dashed lines). It is seen that, at least for
these values of the grain anisotropy parameter, the two types of estimates are in
very good agreement up to fairly large values of n. However, for sufficiently large
n, the two sets of results begin to diverge with the stress potential estimates
turning sharply toward the Taylor bound. Thus, in agreement with our earlier
comments, the dissipation potential estimates appear to be more realistic.

In figure 2a, b, results are shown for the same bounds and estimates as in figure 1,
but this time as functions of the grain anisotropy M , at fixed values of n (3 and 10).
The following additional observations can be made.
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Figure 2. Comparison of the new second-order self-consistent estimates with various bounds
and other self-consistent estimates for the effective flow stress, τ̃0, as functions of the grain
anisotropy, M = (τ0)(2)/(τ0)(1). (a) n = 3; (b) n = 10.

1. The new ‘second-order’ SC estimates should be the most accurate at low grain
anisotropy because of their exact asymptotic status for small contrast. In this
sense, it would appear that all the other SC estimates tend to overestimate the
effective flow stress of the nonlinear polycrystals at low grain anisotropy.

2. Although the ‘affine’ SC estimates were found to satisfy all bounds in the
previous set of figures, it is seen here that, even at a fairly low value of n,
the ‘affine’ SC estimates appear to violate the Kohn–Little bound at suffi-
ciently high grain anisotropy. For the larger value of n, the ‘affine’ SC estimates
break down at even lower values of the grain anisotropy. (Note, however, that
the ‘affine’ method of Zaoui & Masson (1998) can be implemented for elas-
tic viscoplastic constitutive behaviour.) Similarly, the ‘secant’ SC estimates,
which lie between the corresponding ‘incremental’ and ‘affine’ estimates, are
seen to also violate the Kohn–Little bound. In conclusion, the ‘variational’,
‘second-order’ and ‘tangent’ SC estimates are the only that do not violate any
bounds.

3. Because of their origin from a minimum principle (deBotton & Ponte Castañeda
1995), the ‘variational’ SC estimates should provide overestimates relative to
the ‘exact’ SC estimates (i.e. those that would be obtained by means of the
exact minimizing trial field in the context of the minimum principle). In this
respect, the ‘second-order’ and ‘tangent’ SC estimates could be more accu-
rate.

4. It is observed, however, that the ‘tangent’ SC estimates appear to satisfy a dif-
ferent scaling law than the ‘second-order’ and ‘variational’ SC estimates, which
in turn appear to satisfy the same law as the Kohn–Little bound (i.e. square
root in M). Thus, it is seen that the ‘tangent’ SC estimates reach a limiting
state beyond which further increases in M lead to no corresponding increases

9



in the effective flow stress. While strictly unable to rule it out, this behaviour,
especially for the low value of n (n = 3), would appear to be unrealistically
soft.

5. Concluding remarks

In conclusion, the ‘second-order’ SC estimates—those obtained from the dissipation
potential version (3.11) of the theory—would appear to be the most accurate of all,
certainly when compared to the ‘classical’ SC estimates, and probably also when
compared to other recently proposed SC estimates. This statement would be rigor-
ously true at low grain anisotropy, but would still need to be proved more generally.
In this connection, lower bounds that are sharper than Sachs, such as those that
have been proposed by Talbot & Willis (1997) for two-phase nonlinear composites,
would be extremely useful. Similarly, comparisons with direct numerical simulations
could also be very insightful.

This work was supported by NSF grant no. CMS-96-22714. We are grateful to Renaud Masson
for valuable discussions concerning the numerical implementation of the various schemes.
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