110 research outputs found
Study of composition of cosmic rays with energy .7 E 3 Ee
The longitudinal shower development of extensive air showers (EAS) observed in the fly's eye is used to determine the distribution of X sub max, the depth in the atmosphere of the EAS maximum. Data and Monte Carlo simulations of proton and iron primaries are compared. A substantial contribution from light primaries is noted
Atmospheric Muon Flux at Sea Level, Underground, and Underwater
The vertical sea-level muon spectrum at energies above 1 GeV and the
underground/underwater muon intensities at depths up to 18 km w.e. are
calculated. The results are particularly collated with a great body of the
ground-level, underground, and underwater muon data. In the hadron-cascade
calculations, the growth with energy of inelastic cross sections and pion,
kaon, and nucleon generation in pion-nucleus collisions are taken into account.
For evaluating the prompt muon contribution to the muon flux, we apply two
phenomenological approaches to the charm production problem: the recombination
quark-parton model and the quark-gluon string model. To solve the muon
transport equation at large depths of homogeneous medium, a semi-analytical
method is used. The simple fitting formulas describing our numerical results
are given. Our analysis shows that, at depths up to 6-7 km w. e., essentially
all underground data on the muon intensity correlate with each other and with
predicted depth-intensity relation for conventional muons to within 10%.
However, the high-energy sea-level data as well as the data at large depths are
contradictory and cannot be quantitatively decribed by a single nuclear-cascade
model.Comment: 47 pages, REVTeX, 15 EPS figures included; recent experimental data
and references added, typos correcte
A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1
We have carried out a high statistics (2 Billion events) search for
ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3
and Hercules X-1. Using data taken with the CASA-MIA detector over a five year
period (1990-1995), we find no evidence for steady emission from either source
at energies above 115 TeV. The derived upper limits on such emission are more
than two orders of magnitude lower than earlier claimed detections. We also
find no evidence for neutral particle or gamma-ray emission from either source
on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for
emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of
large radio flares. Unless one postulates that these sources were very active
earlier and are now dormant, the limits presented here put into question the
earlier results, and highlight the difficulties that possible future
experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published
in Physical Review
Differential Expression of Type III Effector BteA Protein Due to IS481 Insertion in Bordetella pertussis
BACKGROUND: Bordetella pertussis is the primary etiologic agent of the disease pertussis. Universal immunization programs have contributed to a significant reduction in morbidity and mortality of pertussis; however, incidence of the disease, especially in adolescents and adults, has increased in several countries despite high vaccination coverage. During the last three decades, strains of Bordetella pertussis in circulation have shifted from the vaccine-type to the nonvaccine-type in many countries. A comparative proteomic analysis of the strains was performed to identify protein(s) involved in the type shift. METHODOLOGY/PRINCIPAL FINDING: Proteomic analysis identified one differentially expressed protein in the B. pertussis strains: the type III cytotoxic effector protein BteA, which is responsible for host cell death in Bordetella bronchiseptica infections. Immunoblot analysis confirmed the prominent expression of BteA protein in the nonvaccine-type strains but not in the vaccine-type strains. Sequence analysis of the vaccine-type strains revealed an IS481 insertion in the 5' untranslated region of bteA, -136 bp upstream of the bteA start codon. A high level of bteA transcripts from the IS481 promoter was detected in the vaccine-type strains, indicating that the transcript might be an untranslatable form. Furthermore, BteA mutant studies demonstrated that BteA expression in the vaccine-type strains is down-regulated by the IS481 insertion. CONCLUSION/SIGNIFICANCE: The cytotoxic effector BteA protein is expressed at higher levels in B. pertussis nonvaccine-type strains than in vaccine-type strains. This type-dependent expression is due to an insertion of IS481 in B. pertussis clinical strains, suggesting that augmented expression of BteA protein might play a key role in the type shift of B. pertussis
Prevalence and Genetic Characterization of Pertactin-Deficient Bordetella pertussis in Japan
The adhesin pertactin (Prn) is one of the major virulence factors of Bordetella pertussis, the etiological agent of whooping cough. However, a significant prevalence of Prn-deficient (Prn−) B. pertussis was observed in Japan. The Prn− isolate was first discovered in 1997, and 33 (27%) Prn− isolates were identified among 121 B. pertussis isolates collected from 1990 to 2009. Sequence analysis revealed that all the Prn− isolates harbor exclusively the vaccine-type prn1 allele and that loss of Prn expression is caused by 2 different mutations: an 84-bp deletion of the prn signal sequence (prn1ΔSS, n = 24) and an IS481 insertion in prn1 (prn1::IS481, n = 9). The frequency of Prn− isolates, notably those harboring prn1ΔSS, significantly increased since the early 2000s, and Prn− isolates were subsequently found nationwide. Multilocus variable-number tandem repeat analysis (MLVA) revealed that 24 (73%) of 33 Prn− isolates belong to MLVA-186, and 6 and 3 Prn− isolates belong to MLVA-194 and MLVA-226, respectively. The 3 MLVA types are phylogenetically closely related, suggesting that the 2 Prn− clinical strains (harboring prn1ΔSS and prn1::IS481) have clonally expanded in Japan. Growth competition assays in vitro also demonstrated that Prn− isolates have a higher growth potential than the Prn+ back-mutants from which they were derived. Our observations suggested that human host factors (genetic factors and immune status) that select for Prn− strains have arisen and that Prn expression is not essential for fitness under these conditions
Metabolomic Analysis in Severe Childhood Pneumonia in The Gambia, West Africa: Findings from a Pilot Study
Pneumonia remains the leading cause of death in young children globally and improved diagnostics are needed to better identify cases and reduce case fatality. Metabolomics, a rapidly evolving field aimed at characterizing metabolites in biofluids, has the potential to improve diagnostics in a range of diseases. The objective of this pilot study is to apply metabolomic analysis to childhood pneumonia to explore its potential to improve pneumonia diagnosis in a high-burden setting. and Random Forests (RF). ‘Unsupervised’ (blinded) data were analyzed by Principal Component Analysis (PCA), while ‘supervised’ (unblinded) analysis was by Partial Least Squares-Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures (OPLS). Potential markers were extracted from S-plots constructed following analysis with OPLS, and markers were chosen based on their contribution to the variation and correlation within the data set. The dataset was additionally analyzed with the machine-learning algorithm RF in order to address issues of model overfitting and markers were selected based on their variable importance ranking. Unsupervised PCA analysis revealed good separation of pneumonia and control groups, with even clearer separation of the groups with PLS-DA and OPLS analysis. Statistically significant differences (p<0.05) between groups were seen with the following metabolites: uric acid, hypoxanthine and glutamic acid were higher in plasma from cases, while L-tryptophan and adenosine-5′-diphosphate (ADP) were lower; uric acid and L-histidine were lower in urine from cases. The key limitation of this study is its small size.Metabolomic analysis clearly distinguished severe pneumonia patients from community controls. The metabolites identified are important for the host response to infection through antioxidant, inflammatory and antimicrobial pathways, and energy metabolism. Larger studies are needed to determine whether these findings are pneumonia-specific and to distinguish organism-specific responses. Metabolomics has considerable potential to improve diagnostics for childhood pneumonia
Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics
Global population structure and evolution of Bordetella pertussis and their relationship with vaccination.
Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape
Replica plating of colonies from Listeria-selective agars to blood agar to improve the isolation of Listeria monocytogenes from foods.
Bacterial colonies from Listeria-selective agars were replica plated to sheep blood agar to screen for beta-hemolysis. By using the replica plating method to test for the beta-hemolytic characteristic of all the colonies growing on Listeria-selective agars instead of picking 3 to 10 suspected colonies for further testing, we recovered Listeria monocytogenes from 59 of 142 Listeria-selective agar plates which contained colonies of hemolytic and nonhemolytic Listeria species and were negative when tested by conventional colony picks
- …