21 research outputs found

    Silicon isotopes of deep-sea sponges:new insights into biomineralisation and skeletal structure

    Get PDF
    The silicon isotopic composition (δ30Si) of deep sea sponges’ skeletal element – spicules – reflects the silicic acid (DSi) concentration of their surrounding water and can be used as natural archives of bottom water nutrients. In order to reconstruct the past silica cycle robustly, it is essential to better constrain the mechanisms of biosilicification, which are not yet well understood. Here, we show that the apparent isotopic fractionation (δ30Si) during spicule formation in deep sea sponges from the equatorial Atlantic ranges from −6.74 ‰ to −1.50 ‰ in relatively low DSi concentrations (15 to 35 ÎźM). The wide range in isotopic composition highlights the potential difference in silicification mechanism between the two major classes, Demospongiae and Hexactinellida. We find the anomalies in the isotopic fractionation correlate with skeletal morphology, whereby fused framework structures, characterised by secondary silicification, exhibit extremely light δ30Si signatures compared with previous studies. Our results provide insight into the processes involved during silica deposition and indicate that reliable reconstructions of past DSi can only be obtained using silicon isotope ratios derived from sponges with certain spicule types.ACKNOWLEDGEMENTS. We acknowledge the science team and the crew of JC094 and Laura Robinson for cruise organisation. We would also like to thank Paul Curnow for constructive com- ments, Stuart Kearns for his SEM training and assistance, and Maria LĂłpez-Acosta for her help. Finally, the funding from the Royal Society (grant code RG130386) and from the European Research Council is acknowledged. Joana R. Xavier received support from the European Union's Horizon 2020 research and innovation program through the SponGES project (grant agreement no. 679849). SAMPLE AVAILABILITY. Samples and sample images are available at the University of Bristol; for further detail contact Katharine R. Hendry, email address: [email protected]

    Silicon isotope and silicic acid uptake in surface waters of Marguerite Bay, West Antarctic Peninsula

    Get PDF
    The silicon isotope composition (δ30Si) of dissolved silicon (DSi) and biogenic silica (BSi) provides information about the silicon cycle and its role in oceanic carbon uptake in the modern ocean and in the past. However, there are still questions outstanding regarding the impact of processes such as oceanic mixing, export and dissolution on the isotopic signature of seawater, and the impacts on sedimentary BSi. This study reports the δ30Si of DSi from surface waters at the Rothera Time Series (RaTS) site, Ryder Bay, in a coastal region of the West Antarctic Peninsula (WAP). The samples were collected at the end of austral spring through the end of austral summer/beginning of autumn over two field seasons, 2004/5 and 2005/6. Broadly, for both field seasons, DSi diminished and δ30Si of DSi increased through the summer, but this was accomplished during only a few short periods of net nutrient drawdown. During these periods, the δ30Si of DSi was negatively correlated with DSi concentrations. The Si isotope fractionation factor determined for the net nutrient drawdown periods, ɛuptake, was in the range of -2.26 to -1.80‰ when calculated using an open system model and -1.93 to -1.33‰ when using a closed system model. These estimates of ɛ are somewhat higher than previous studies that relied on snapshots in time rather than following changes in δ30Si and DSi over time, which therefore were more likely to include the effects of mixing of dissolved silicon up into the mixed layer. Results highlight also that, even at the same station and within a single growing season, the apparent fractionation factor may exhibit significant temporal variability because of changes in the extent of biological removal of DSi, nutrient source, siliceous species, and mixing events. Paleoceanographic studies using silicon isotopes need careful consideration in the light of our new results

    The Antarctic Silicon Trap

    No full text
    The Southern Ocean, the ocean encircling Antarctica, has been described by explorers as cold, empty, and dangerous. Despite this, it is a paradise for tiny algae called diatoms that are crucial players in the regulation of our climate. Why are these tiny organisms so happy in this cold and far away ocean? Diatoms have a solid shell made of a glass-like material called silica, so they need to find silicon in surface waters to build it. The Southern Ocean is the perfect place for diatoms because it is full of silicon compared to the other oceans. This is due to a special phenomenon called the silicon pump, which makes the Southern Ocean a giant trap for silicon. In this article, we point out the central role of the Southern Ocean in the regulation of Earth’s climate and how it controls the distribution of silicon and the wellbeing of diatoms in Antarctic waters

    The Silicon Cycle in the Ocean

    No full text
    The element silicon is everywhere! In fact, silicon is the second most abundant element in Earth’s crust. Silicon in rocks and minerals breaks down and is transported from rivers and streams into the world’s oceans. Many marine organisms need silicon as it is a crucial nutrient to build their skeletons. Silicon eventually reaches the seafloor, but its journey into the abyss is not straightforward due to biological, physical, and chemical processes. All these processes transport and transform silicon, creating a cycle that we call the marine silicon cycle. The silicon cycle is directly connected to the carbon cycle, making silicon a key player in the regulation of Earth’s climate. In this article, we discuss why we need to understand the marine silicon cycle, explain the steps that happen in the ocean, and demonstrate how the marine silicon cycle affects humans

    Polonium-210 data from West Antarctic Peninsula sediment cores

    No full text
    Three sediment cores were collected along the West Antarctic Peninsula during RRS James Clark Ross expedition JR15003. Pb-210 analyses of sediment samples were carried out at GAU-Radioanalytical Laboratories, National Oceanography Centre, Southampton. The samples were measured by alpha spectrometry of Po-210, a proxy method that gives the activity of Pb-210, as Po-210 is a granddaughter of Pb-210 (Appleby, 2008; doi:10.1177/0959683607085598). The sediment samples were almost 2 years old, so it was assumed Pb-210 had reached secular equilibrium with Po-210 (half-life = 138 days) within the sediment (Baskaran, 2011; doi:10.1016/j.jenvrad.2010.10.007 and San Miguel et al., 2002; doi:10.1016/S0168-9002(02)01415-8)
    corecore