14 research outputs found

    Die Bedeutung von angeborenen Effektorzellen waehrend einer Typ 2 Immunantwort

    Get PDF
    Wurminfektionen und allergische Reaktionen sind mit einer starken Zunahme von Interleukin-4 (IL-4)-produzierenden Zellen des angeborenen und adaptiven Immunsystems assoziiert. In dieser Arbeit wurden einige grundlegende Eigenschaften IL-4-produzierender Zellen des angeborenen Immunsystems untersucht. Es konnte gezeigt werden, dass die Zunahme eosinophiler und basophiler Granulozyten nach Infektion mit dem gastrointestinalen Nematoden Nippostrongylus brasiliensis auf unterschiedliche Art reguliert wird: Basophile Granulozyten nehmen durch eine erhöhte de novo Bildungsrate im Knochenmark zu, während die Anzahl eosinophiler Granulozyten durch eine erniedrigte Apoptoserate in peripheren Organen erhöht wird. Durch Immunfluoreszenzfärbungen N. brasiliensis-infizierter Mäuse konnte hier erstmals gezeigt werden, dass sich beide Zelltypen in der roten Pulpa der Milz nahe der Marginalzone ansammeln, während Mastzellen im Marginalsinus lokalisiert sind. Ferner wurde eine Zunahme eosinophiler und basophiler Granulozyten in der Lamina propria des Dünndarms und in der Lunge festgestellt, wobei basophile Granulozyten gleichmäßig verteilt im Parenchym der Lunge vorliegen, während eosinophile Granulozyten hauptsächlich in perivaskulären und peribronchialen Bereichen lokalisiert sind. Die funktionelle Charakterisierung von basophilen Granulozyten zeigte, dass diese durch sekretorische Produkte von N. brasiliensis-Larven aktiviert werden können, wenn sie zuvor mit Serum infizierter Mäuse sensibilisiert worden waren. Zudem können basophile Granulozyten die alternative Aktivierung von Makrophagen veranlassen und die Zunahme eosinophiler Granulozyten in vivo verstärken. Die Depletion von basophilen Granulozyten zeigte, dass sie an der Eliminierung einer primären und sekundären N. brasiliensis-Infektion entscheidend beteiligt sind. Des Weiteren konnte die Bedeutung von dendritischen Zellen (DC) durch Verwendung von genetisch DC-defizienten Mäusen für die Initiierung einer effizienten Immunantwort gegen N. brasiliensis bewiesen werden. Die hier vorgestellten Ergebnisse unterstreichen die entscheidende Rolle von Zellen des angeborenen Immunsystems bei einer Th2-Immunantwort und könnten somit auch zum besseren Verständnis von Th2-assoziierten Krankheitsbildern beitragen

    Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells

    Get PDF
    Microbiota drive tertiary lymphoid tissue formation in mice lacking the nuclear hormone receptor Rorγt, leading to intestinal inflammation and wasting disease

    Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice

    Get PDF
    Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.</p

    Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity

    Get PDF
    Lack of immunological tolerance against self-antigens results in autoimmune disorders. During onset of autoimmunity, dendritic cells (DCs) are thought to be critical for priming of self-reactive T cells that have escaped tolerance induction. However, because DCs can also induce T cell tolerance, it remains unclear whether DCs are required under steady-state conditions to prevent autoimmunity. To address this question, we crossed CD11c-Cre mice with mice that express diphtheria toxin A (DTA) under the control of a loxP-flanked neomycin resistance (neoR) cassette from the ROSA26 locus. Cre-mediated removal of the neoR cassette leads to DTA expression and constitutive loss of conventional DCs, plasmacytoid DCs, and Langerhans cells. These DC-depleted (ΔDC) mice showed increased frequencies of CD4 single-positive thymocytes and infiltration of CD4 T cells into peripheral tissues. They developed spontaneous autoimmunity characterized by reduced body weight, splenomegaly, autoantibody formation, neutrophilia, high numbers of Th1 and Th17 cells, and inflammatory bowel disease. Pathology could be induced by reconstitution of wild-type (WT) mice with bone marrow (BM) from ΔDC mice, whereas mixed BM chimeras that received BM from ΔDC and WT mice remained healthy. This demonstrates that DCs play an essential role to protect against fatal autoimmunity under steady-state conditions

    The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages

    Get PDF
    Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation

    Microbiota, regulatory T cell subsets, and allergic disorders

    Get PDF
    Epidemiologic studies revealed a crucial role of the environment for the increased prevalence of aller-gic disorders. e microbiota as part of our imme-diate environment promotes immune diversity that facilitates a well-equilibrated balance between immunity and tolerance. Alterations of our sym-biotic microbiota especially in early life is thought to play a fundamental role in defining susceptibility to the development of allergic diseases during adult life on the population level. Due to a high density of bacteria, viruses and fungi and a large contact surface area for host-microbiota inter-actions, the most relevant interaction between microbes and our immune system are thought to occur in the gut. e immune system co-evolved with the symbiotic microbiota and adopted a vari-ety of mechanisms to allow a dynamic state of tol-erance, including the induction of regulatory T cells (Tregs). Foxp3-expressing Tregs are well-described immune regulators in autoimmune and allergic disorders. However, recent years have shown that Tregs can come in di-erent ?avours with dierent regulatory potential and outcome for our immune system. is review summarizes novel findings from basic immunology research that may help to better understand the interaction between the microbiota, dierentiation of Tregs and its consequences for the onset and regulation of allergic disorders

    Comparative Metagenomic Analysis of Bacteriophages and Prophages in Gnotobiotic Mouse Models

    No full text
    Gnotobiotic murine models are important to understand microbiota–host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host’s environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome “dark matter” and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome

    Dendritic cell accumulation in the gut and central nervous system is differentially dependent on α4 integrins

    No full text
    Homing of pathogenic CD4+ T cells to the CNS is dependent on α4 integrins. However, it is uncertain whether α4 integrins are also required for the migration of dendritic cell (DC) subsets, which sample Ags from nonlymphoid tissues to present it to T cells. In this study, after genetic ablation of Itga4 in DCs and monocytes in mice via the promoters of Cd11c and Lyz2 (also known as LysM), respectively, the recruitment of α4 integrin-deficient conventional and plasmacytoid DCs to the CNS was unaffected, whereas α4 integrin-deficient, monocyte-derived DCs accumulated less efficiently in the CNS during experimental autoimmune encephalomyelitis in a competitive setting than their wild-type counterparts. In a noncompetitive setting, α4 integrin deficiency on monocyte-derived DCs was fully compensated. In contrast, in small intestine and colon, the fraction of α4 integrin-deficient CD11b+CD103+ DCs was selectively reduced in steady-state. Yet, T cell-mediated inflammation and host defense against Citrobacter rodentium were not impaired in the absence of α4 integrins on DCs. Thus, inflammatory conditions can promote an environment that is indifferent to α4 integrin expression by DCs

    TLR-induced cytokines promote effective proinflammatory natural Th17 cell responses.

    No full text
    International audienceNaive CD4 lymphocytes undergo a polarization process in the periphery to become induced Th17 (iTh17) cells. Using retinoic acid-related orphan receptor γt (RORγt)-gfp mice, we found that RORγt and the transcription factor promyelocytic leukemia zinc finger (PLZF) are valuable new markers to identify the recently described natural Th17 (nTh17) cell population. nTh17 cells are thymically committed to promptly produce large amounts of IL-17 and IL-22. In this study, we show that, in addition to responding to TCR cross-linking, nTh17 cells secrete IL-17 and IL-22 when stimulated with IL-23 plus IL-1β, either in recombinant form or in supernatants from TLR4-activated dendritic cells. This innate-like ability of RORγt(+) nTh17 cells to respond to TLR4-induced cytokines was not shared by iTh17 cells. The other distinct properties of RORγt(+) nTh17 cells are their high expression of PLZF and their absence from lamina propria; iTh17 cells are found therein. RORγt(+) nTh17 cells are present in the thymus of germ-free RORγt-gfp and IL-6(-/-) RORΓ: t-gfp mice, indicating that these cells do not require symbiotic microbiota or IL-6 for their generation. Finally, we found that PLZF(+)RORγt(+) nTh17 cells represent one of the primary IL-17-producing innate-like T cell populations in a TLR7 imiquimod model of psoriasis-like disorder, indicating their involvement in this kind of lesion. Collectively, our results reveal RORγt and PLZF as characteristic markers for identifying nTh17 cells and demonstrate one of their novel properties: the ability to respond promptly to TLR-dependent proinflammatory stimuli without TCR engagement, placing them as members of the innate-like T cell family
    corecore