1,485 research outputs found
The ALTCRISS project on board the International Space Station
The Altcriss project aims to perform a long term survey of the radiation
environment on board the International Space Station. Measurements are being
performed with active and passive devices in different locations and
orientations of the Russian segment of the station. The goal is to perform a
detailed evaluation of the differences in particle fluence and nuclear
composition due to different shielding material and attitude of the station.
The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the
energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also
placed in the same location of Sileye-3 detector. Polyethylene shielding is
periodically interposed in front of the detectors to evaluate the effectiveness
of shielding on the nuclear component of the cosmic radiation. The project was
submitted to ESA in reply to the AO in the Life and Physical Science of 2004
and data taking began in December 2005. Dosimeters and data cards are rotated
every six months: up to now three launches of dosimeters and data cards have
been performed and have been returned with the end of expedition 12 and 13.Comment: Accepted for publication on Advances in Space Research
http://dx.doi.org/10.1016/j.asr.2007.04.03
Launch of the Space experiment PAMELA
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study
of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8).
The experiment, housed on board the Russian Resurs-DK1 satellite, was launched
on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The
detector is composed of a series of scintillator counters arranged at the
extremities of a permanent magnet spectrometer to provide charge,
Time-of-Flight and rigidity information. Lepton/hadron identification is
performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at
the bottom of the device. An Anticounter system is used offline to reject false
triggers coming from the satellite. In self-trigger mode the Calorimeter, the
neutron detector and a shower tail catcher are capable of an independent
measure of the lepton component up to 2 TeV. In this work we describe the
experiment, its scientific objectives and the performance in the first months
after launch.Comment: Accepted for publication on Advances in Space Researc
The current status of orbital experiments for UHECR studies
Two types of orbital detectors of extreme energy cosmic rays are being
developed nowadays: (i) TUS and KLYPVE with reflecting optical systems
(mirrors) and (ii) JEM-EUSO with high-transmittance Fresnel lenses. They will
cover much larger areas than existing ground-based arrays and almost uniformly
monitor the celestial sphere. The TUS detector is the pioneering mission
developed in SINP MSU in cooperation with several Russian and foreign
institutions. It has relatively small field of view (+/-4.5 deg), which
corresponds to a ground area of 6.4x10^3 sq.km. The telescope consists of a
Fresnel-type mirror-concentrator (~2 sq.m) and a photo receiver (a matrix of
16x16 photomultiplier tubes). It is to be deployed on the Lomonosov satellite,
and is currently at the final stage of preflight tests. Recently, SINP MSU
began the KLYPVE project to be installed on board of the Russian segment of the
ISS. The optical system of this detector contains a larger primary mirror (10
sq.m), which allows decreasing the energy threshold. The total effective field
of view will be at least +/-14 degrees to exceed the annual exposure of the
existing ground-based experiments. Several configurations of the detector are
being currently considered. Finally, JEM-EUSO is a wide field of view (+/-30
deg) detector. The optics is composed of two curved double-sided Fresnel lenses
with 2.65 m external diameter, a precision diffractive middle lens and a pupil.
The ultraviolet photons are focused onto the focal surface, which consists of
nearly 5000 multi-anode photomultipliers. It is developed by a large
international collaboration. All three orbital detectors have multi-purpose
character due to continuous monitoring of various atmospheric phenomena. The
present status of development of the TUS and KLYPVE missions is reported, and a
brief comparison of the projects with JEM-EUSO is given.Comment: 18 pages; based on the rapporteur talk given by M.I. Panasyuk at
ECRS-2014; v2: a few minor language issues fixed thanks to the editor; to be
published in the proceeding
SPADA: A project to study the effectiveness of shielding materials in space
The SPADA (SPAce Dosimetry for Astronauts) project is a part of an extensive teamwork that aims to optimize shielding solutions against space radiation. Shielding is indeed an irreplaceable tool to reduce exposure of crews of future Moon and Mars missions. We concentrated our studies on two flexible materials, Kevlar R� and Nextel R,� because of their ability to protect human space infrastructures
from micrometeoroids. We measured radiation hardness of these shielding materials and compared to polyethylene, generally acknowledged as the most effective space radiation shield with practical applications in spacecraft. Both flight test (on the International Space Station and on the Russian FOTON M3 rocket), with passive dosimeters and accelerator-based experiments have been performed. Accelerator tests using high-energy Fe ions have demonstrated that Kevlar is almost as effective as polyethylene in shielding heavy ions, while Nextel is a poor shield against high-charge and -energy particles. Preliminary results from spaceflight, however, show that for the radiation environment in low-Earth orbit, dominated by trapped protons, thin shields of Kevlar and Nextel provide limited reduction
Observations of the December 13 and 14, 2006, Solar Particle Events in the 80 MeV/n - 3 GeV/n range from space with PAMELA detector
We present the space spectrometer PAMELA observations of proton and helium
fluxes during the December 13 and 14, 2006 solar particle events. This is the
first direct measurement of the solar energetic particles in space with a
single instrument in the energy range from 80 MeV/n up to 3
GeV/n. In the event of December 13 measured energy spectra of solar protons and
helium were compared with results obtained by neutron monitors and other
detectors. Our measurements show a spectral behaviour different from those
derived from the neutron monitor network. No satisfactory analytical fitting
was found for the energy spectra. During the first hours of the December 13
event solar energetic particles spectra were close to the exponential form
demonstrating rather significant temporal evolution. Solar He with energy up to
~1 GeV/n was recorded on December 13. In the event of December 14 energy of
solar protons reached ~600 MeV whereas maximum energy of He was below 100
MeV/n. The spectra were slightly bended in the lower energy range and preserved
their form during the second event. Difference in the particle flux appearance
and temporal evolution in these two events may argue for a special conditions
leading to acceleration of solar particles up to relativistic energies.Comment: Accepted for publication on Astrophysical journa
Two years of flight of the Pamela experiment: results and perspectives
PAMELA is a satellite borne experiment designed to study with great accuracy
cosmic rays of galactic, solar, and trapped nature in a wide energy range
(protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the
study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50
MeV-270 GeV) and search for antinuclei with a precision of the order of
). The experiment, housed on board the Russian Resurs-DK1 satellite,
was launched on June, 2006 in a orbit with an
inclination of 70 degrees. In this work we describe the scientific objectives
and the performance of PAMELA in its first two years of operation. Data on
protons of trapped, secondary and galactic nature - as well as measurements of
the December 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the
International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008
Waseda University, Shinjuku, Tokyo, Japa
- …