26 research outputs found

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment1, 2, 3, 4. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions1, 5, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators6, 7, 8, 9, 10. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring)6, 7, 8, 9, 11. The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood5, 6, 7, 9. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization12 where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1–19 h, whereas period length—the time in which a parent’s probability to incubate cycles once between its highest and lowest value—varied from 6–43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light–dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity5, 6, 7, 9. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms

    Switchgrass Biomass Composition Traits and their Effects on its Digestion by Ruminants and Bioconversion to Ethanol

    Get PDF
    Six generations of divergent breeding in switchgrass (Panicum virgatum L.) for forage in vitro digestibility (IVDMD) resulted in significant changes in 20 biomass composition traits. Stepwise multiregression was used to determine which of the 20 composition traits had the largest significant effects on forage IVDMD and potential ethanol yield (ETOH) in a biorefinery. Switchgrass biomass samples from a field nursery containing the divergent switchgrass populations and families were harvested after flowering, dried, ground, and analyzed for composition traits by nearinfrared reflectance analyses using previously developed near-infrared reflectance calibrations. After nonsignificant variables were eliminated, the resulting multiple regression models were highly significant (P \u3c 0.001) and accounted for 95 and 96%, respectively, of the total variation for both IVDMD and ETOH. Standardized partial regression coefficients were used to estimate the relative importance of each significant variable. The biomass composition factors that had the largest impact on both IVDMD and ETOH were esterified ferulates, p-coumarate esters, specific cell wall sugars that are involved in the linkage of cell wall lignin to hemicellulose, N, and extracted fats. Klason lignin was not a significant variable in either regression analysis, even though it was strongly negatively correlated with both IVDMD and ETOH. The IVDMD test, which acted as a biological selection index in a longterm population breeding program, impacted an array of switchgrass biomass composition traits whose relative effects on both IVDMD and ETOH had not been previously quantified

    Reproductive Success of Piping Plovers on Alkali Lakes in North Dakota and Montana

    Get PDF
    Low reproductive success is thought to be a chief cause of the steady decline in numbers of piping plover (Charadrius melodus) that nest in the northern Great Plains. Surprisingly, few reproductive success data are published from alkali lakes in the region, where most breeding pairs of piping plover nest. During 1994 to 1997 we measured nest success and fledging rates of piping plovers at 32 alkali lakes across northwestern North Dakota and northeastern Montana, at the center of the species\u27 breeding range in the Great Plains. Annual nest success and fledging rates averaged 38% (Mayfield estimate; 20 to 66 nests/year) and 0.76 chicks/pair (28 to 76 pairs/year). The mean annual fledging rate we observed approximated that previously projected for the region from a small number of major breeding areas, and was at least 33% below estimated levels needed for population stability. About one-half of the productivity losses occurred during the egg stage, especially near hatching. Our data confirm that reproductive success of piping plovers on alkali lakes probably is less than that needed to sustain the species\u27 Great Plains population

    Quantifying Actual and Theoretical Ethanol Yields for Switchgrass Strains Using NIRS Analyses

    Get PDF
    Quantifying actual and theoretical ethanol yields from biomass conversion processes such as simultanteous saccharification and fermentation (SSF) requires expensive, complex fermentation assays, and extensive compositional analyses of the biomass sample. Near-infrared reflectance spectroscopy (NIRS) is a non-destructive technology that can be used to obtain rapid, low-cost, high-throughput, and accurate estimates of agricultural product composition. In this study, broad-based NIRS calibrations were developed for switchgrass biomass that can be used to estimate over 20 components including cell wall and soluble sugars and also ethanol production and pentose sugars released as measured using a laboratory SSF procedure. With this information, an additional 13 complex feedstock traits can be determined including theoretical and actual ethanol yields from hexose fermentation. The NIRS calibrations were used to estimate feedstock composition and conversion information for biomass samples from a multi-year switchgrass (Panicum virgatum L.) biomass cultivar evaluation trial. There were significant differences among switchgrass strains for all biomass conversion and composition traits including actual ethanol yields, ETOHL (L Mg−1) and theoretical ethanol yields, ETOHTL (L Mg−1), based on cell wall and non-cell wall composition NIRS analyses. ETOHL means ranged from 98 to 115 L Mg−1 while ETOHTL means ranged from 203 to 222 L Mg−1. Because of differences in both biomass yields and conversion efficiency, there were significant differences among strains for both actual (2,534–3,720 L ha−1) and theoretical (4,878–7,888 L ha−1) ethanol production per hectare. It should be feasible to improve ethanol yields per hectare by improving both biomass yield and conversion efficiency by using NIRS analyses to quantify differences among cultivars and management practices

    Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass

    Get PDF
    Alfalfa stems, reed canarygrass, and switchgrass; perennial herbaceous species that have potential as biomass energy crops in temperate regions; were evaluated for their bioconversion potential as energy crops. Each forage species was harvested at two or three maturity stages and analyzed for carbohydrates, lignin, protein, lipid, organic acids, and mineral composition. The biomass samples were also evaluated for sugar yields following pretreatment with dilute sulfuric followed by enzymatic saccharification using a commercial cellulase preparation. Total carbohydrate content of the plants varied from 518 to 655 g kg-1 dry matter (DM) and cellulose concentration from 209 to 322 g kg-1 DM. Carbohydrate and lignin contents were lower for samples from early maturity samples compared to samples from late maturity harvests. Several important trends were observed in regards to the efficiency of sugar recovery following treatments with dilute acid and cellulase. First, a significant amount of the available carbohydrates were in the form of soluble sugars and storage carbohydrates (4.3–16.3% wt/wt). Recovery of soluble sugars following dilute acid pretreatment was problematic, especially that of fructose. Fructose was found to be extremely labile to the dilute acid pretreatments. Second, the efficiency at which available glucose was recovered was inversely correlated to maturity and lignin content. However, total glucose yields were higher for the later maturities because of higher cellulose contents compared to the earlier maturity samples. Finally, cell wall polysaccharides, as determined by the widely applied detergent fiber system were found to be inaccurate. The detergent fiber method consistently overestimated cellulose and hemicellulose and underestimated lignin by substantial amounts

    Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin

    Get PDF
    Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011–May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions

    Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds

    Get PDF
    Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, lowabundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.publishedVersio

    Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds

    Get PDF
    Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, lowabundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.publishedVersio
    corecore