29 research outputs found

    Reflected entropy for free scalars

    Get PDF
    We continue our study of reflected entropy, R(A, B), for Gaussian systems. In this paper we provide general formulas valid for free scalar fields in arbitrary dimensions. Similarly to the fermionic case, the resulting expressions are fully determined in terms of correlators of the fields, making them amenable to lattice calculations. We apply this to the case of a (1 + 1)-dimensional chiral scalar, whose reflected entropy we compute for two intervals as a function of the cross-ratio, comparing it with previous holographic and free-fermion results. For both types of free theories we find that reflected entropy satisfies the conjectural monotonicity property R(A, BC) ≥ R(A, B). Then, we move to (2 + 1) dimensions and evaluate it for square regions for free scalars, fermions and holography, determining the very-far and very-close regimes and comparing them with their mutual information counterparts. In all cases considered, both for (1 + 1)- and (2 + 1)-dimensional theories, we verify that the general inequality relating both quantities, R(A, B) ≥ I (A, B), is satisfied. Our results suggest that for general regions characterized by length-scales LA ∼ LB ∼ L and separated a distance ℓ, the reflected entropy in the large-separation regime (x ≡ L/ℓ ≪ 1) behaves as R(x) ∼ −I(x) log x for general CFTs in arbitrary dimensions.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin

    Entanglement entropy of a Maxwell field on the sphere

    Get PDF
    We compute the logarithmic coefficient of the entanglement entropy on asphere for a Maxwell field in d=4 dimensions. In spherical coordinates theproblem decomposes into one dimensional ones along the radial coordinate foreach angular momentum. We show the entanglement entropy of a Maxwell field isequivalent to the one of two identical massless scalars from which the mode ofl=0 has been removed. This shows the relation c^M_{log}=2(c^S_{log}-c^{S_{l=0}}_{log}) between the logarithmic coefficient in theentropy for a Maxwell field c^M_{log}, the one for a d=4 massless scalarc_{log}^S, and the logarithmic coefficient c^{S_{l=0}}_{log} for a d=2scalar with Dirichlet boundary condition at the origin. Using the acceptedvalues for these coefficients c_{log}^S=-1/90 and c^{S_{l=0}}_{log}=1/6we get c^M_{log}=-16/45, which coincides with Dowker´s calculation, but doesnot match the coefficient -rac{31}{45} in the trace anomaly for a Maxwellfield. We have numerically evaluated these three numbers c^M_{log},c^S_{log} and c^{S_{l=0}}_{log}, verifying the relation, as well aschecked they coincide with the corresponding logarithmic term in mutualinformation of two concentric spheres.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Reflected entropy, symmetries and free fermions

    Get PDF
    Exploiting the split property of quantum field theories (QFTs), a notion of von Neumann entropy associated to pairs of spatial subregions has been recently proposed both in the holographic context — where it has been argued to be related to the entanglement wedge cross section — and for general QFTs. We argue that the definition of this “reflected entropy” can be canonically generalized in a way which is particularly suitable for orbifold theories — those obtained by restricting the full algebra of operators to those which are neutral under a global symmetry group. This turns out to be given by the full-theory reflected entropy minus an entropy associated to the expectation value of the “twist” operator implementing the symmetry operation. Then we show that the reflected entropy for Gaussian fermion systems can be simply written in terms of correlation functions and we evaluate it numerically for two intervals in the case of a two-dimensional Dirac field as a function of the conformal cross-ratio. Finally, we explain how the aforementioned twist operators can be constructed and we compute the corresponding expectation value and reflected entropy numerically in the case of the ℤ2 bosonic subalgebra of the Dirac field.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Anisotropic Unruh temperatures

    Get PDF
    The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Irreversibility in quantum field theories with boundaries

    Get PDF
    We study conformal field theories with boundaries, and their boundary renormalization group (RG) flows, using methods from quantum information theory. Positivity of the relative entropy, together with unitarity and Lorentz invariance, give rise to bounds that characterize the irreversibility of such flows. This generalizes the recently proved entropic g-theorem to higher dimensions. In 2 + 1 dimensions with a boundary, we prove the entropic b-theorem — the decrease of the two-dimensional Weyl anomaly under boundary RG flows. In higher dimensions, the bound implies that the leading area coefficient of the entanglement entropy induced by the defect decreases along the flow. Our proof unifies these properties, and provides an information-theoretic interpretation in terms of the distinguishability between the short distance and long distance states. Finally, we establish a sum rule for the change in the area term in theories with boundaries, which could have implications for models with localized gravity.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Salazar, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Torroba, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Mutual information of generalized free fields

    Get PDF
    We study generalized free fields (GFF) from the point of view of information measures. We first review conformal GFF, their holographic representation, and the ambiguities in the assignation of algebras to regions that arise in these theories. Then we study the mutual information (MI) in several geometric configurations. The MI displays unusual features at the short distance limit: a leading volume term rather than an area term, and a logarithmic term in any dimensions rather than only for even dimensions as in ordinary conformal field theory's. We find the dependence of some subleading terms on the conformal dimension Δ of the GFF. We study the long distance limit of the MI for regions with boundary in the null cone. The pinching limit of these surfaces show the GFF behaves as an interacting model from the MI point of view. The pinching exponents depend on the choice of algebra. The entanglement wedge algebra choice allows these models to "fake"causality, giving results consistent with its role in the description of large N models.Fil: Benedetti, Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Martinez, Pedro Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Generalized symmetries and Noether’s theorem in QFT

    Get PDF
    We show that generalized symmetries cannot be charged under a continuous global symmetry having a Noether current. Further, only non-compact generalized symmetries can be charged under a continuous global symmetry. These results follow from a finer classification of twist operators, which naturally extends to finite group global symmetries. They unravel topological obstructions to the strong version of Noether’s theorem in QFT, even if under general conditions a global symmetry can be implemented locally by twist operators (weak version). We use these results to rederive Weinberg-Witten’s theorem within local QFT, generalizing it to massless particles in arbitrary dimensions and representations of the Lorentz group. Several examples with local twists but without Noether currents are described. We end up discussing the conditions for the strong version to hold, dynamical aspects of QFT’s with non-compact generalized symmetries, scale vs conformal invariance in QFT, connections with the Coleman-Mandula theorem and aspects of global symmetries in quantum gravity.Fil: Benedetti, Valentin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Magán, Javier M.. University of Pennsylvania; Estados Unidos. Vrije Unviversiteit Brussel; Bélgic

    Generalizing the entanglement entropy of singular regions in conformal field theories

    Get PDF
    We study the structure of divergences and universal terms of the entanglement and Rényi entropies for singular regions. First, we show that for (3 + 1)-dimensional free conformal field theories (CFTs), entangling regions emanating from vertices give rise to a universal contribution Snuniv=−18πfb(n)∫γk2log2(R/δ), where γ is the curve formed by the intersection of the entangling surface with a unit sphere centered at the vertex, and k the trace of its extrinsic curvature. While for circular and elliptic cones this term reproduces the general-CFT result, it vanishes for polyhedral corners. For those, we argue that the universal contribution, which is logarithmic, is not controlled by a local integral, but rather it depends on details of the CFT in a complicated way. We also study the angle dependence for the entanglement entropy of wedge singularities in 3+1 dimensions. This is done for general CFTs in the smooth limit, and using free and holographic CFTs at generic angles. In the latter case, we show that the wedge contribution is not proportional to the entanglement entropy of a corner region in the (2 + 1)-dimensional holographic CFT. Finally, we show that the mutual information of two regions that touch at a point is not necessarily divergent, as long as the contact is through a sufficiently sharp corner. Similarly, we provide examples of singular entangling regions which do not modify the structure of divergences of the entanglement entropy compared with smooth surfaces.Fil: Bueno, Pablo. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Witczak-Krempa, William. University of Montreal; Canad

    Comments on Jacobson’s “entanglement equilibrium and the Einstein equation”

    Get PDF
    Using holographic calculations, we examine a key assumption made in Jacobson’s recent argument for deriving Einstein’s equations from vacuum entanglement entropy. Our results involving relevant operators with low conformal dimensions seem to conflict with Jacobson’s assumption. However, we discuss ways to circumvent this problem.Fil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Galante, Damián A.. Western University; Canadá. Perimeter Institute for Theoretical Physics; CanadáFil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canad

    Relative entropy for coherent states from Araki formula

    Get PDF
    We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin
    corecore