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Abstract: We study conformal field theories with boundaries, and their boundary renor-

malization group (RG) flows, using methods from quantum information theory. Positivity

of the relative entropy, together with unitarity and Lorentz invariance, give rise to bounds

that characterize the irreversibility of such flows. This generalizes the recently proved en-

tropic g-theorem to higher dimensions. In 2 + 1 dimensions with a boundary, we prove the

entropic b-theorem — the decrease of the two-dimensional Weyl anomaly under boundary

RG flows. In higher dimensions, the bound implies that the leading area coefficient of the

entanglement entropy induced by the defect decreases along the flow. Our proof unifies

these properties, and provides an information-theoretic interpretation in terms of the dis-

tinguishability between the short distance and long distance states. Finally, we establish

a sum rule for the change in the area term in theories with boundaries, which could have

implications for models with localized gravity.
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1 Introduction

Boundaries are ubiquitous in broad areas of physics, including high energy, condensed

matter physics and, of course, real experiments. In particular, systems that preserve scale

invariance play a central role in the dynamics and phases of quantum field theories (QFTs)

with boundaries. This is analogous to how fixed points of the renormalization group (RG)

organize the dynamics of QFTs without boundaries [1]. In this work we consider fixed

points of relativistic QFTs with boundaries, and how they are connected by RG flows. Our

goal is to understand if these flows are irreversible. We will approach the problem using

quantum information theory.

The irreversibility of relativistic QFTs without boundaries has been established in

two [2, 3], three [4], and four [5, 6] spacetime dimensions. Methods from quantum in-

formation theory, based on strong subadditivity of the entanglement entropy (EE), have

provided a unifying proof for all these irreversibility theorems [6]. A natural question is

whether some of these properties survive in the presence of boundaries.

The earliest result in this direction is the g-theorem: this establishes the irreversibility

of boundary RG flows1 in 2d CFTs with boundaries [7, 8]. The entropic version of this result

was recently obtained in [9]. More generally, one can consider higher-dimensional quantum

field theories with boundaries, that respect conformal invariance, and their boundary RG

1A boundary RG flow is an RG flow triggered by a relevant deformation that is turned on only at the

boundary. The bulk, as in all cases in this work, is conformal.
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flows.2 In this paper we study generalizations of the approach of [9] to higher-dimensional

boundary conformal field theories (BCFTs). We will use methods from quantum informa-

tion theory to characterize boundary RG flows.

The introduction of boundaries poses new challenges to this approach. One is related

to the (partial) breaking of the Poincaré group, which makes relativistic constraints less

powerful. Another new issue is that, while the RG flow occurs at the boundary, the dy-

namics of the boundary degrees of freedom by themselves is nonlocal. The nonlocality is

induced by interactions with the bulk, and it could prevent the existence of irreversibility

theorems for such flows. A surprising outcome of our results will be that the nonlocal-

ity cancels out from the measures of quantum information theory that we analyze (the

entanglement entropy and the relative entropy). While locality, causality and conformal

invariance in the bulk are ultimately responsible for this, this is a point that remains to be

fully understood and exploited.

Before proceeding, let us mention some encouraging results in higher dimensions. One

is the b-theorem of [11], regarding the irreversibility of boundary RG flows in 3d. This

was shown using dilaton methods [5]. There is also evidence for a boundary F -theorem in

4d systems with boundaries [12, 13]. On the other hand, holographic models also exhibit

irreversibility of boundary RG flows in general d [14]. Other examples, and a suggestion

for an irreversible quantity, are explored in the recent works [15, 16].

This paper is organized as follows. In section 2 we discuss relevant aspects of boundary

RG flows, and how they can be measured in terms of the entanglement entropy. In section 3

we study the relative entropy and its connection with the entanglement entropy. We argue

that, by taking the limit where the Cauchy surface becomes null, the modular hamiltonian

contribution vanishes (in a certain range for the relevant deformation dimension). This is

one of our main results, which allows us to use positivity of the relative entropy to bound

the change in the EE between the UV and the IR. It extends [9] to higher dimensions; its

consequences are discussed in section 4. We prove the entropic version of the b-theorem in

2+1 dimensions, and “area theorems” for higher dimensional QFTs with boundaries. In

section 5 we derive a sum rule that provides an explicit expression for the change in the

EE in terms of the two-point function of the trace of the boundary stress tensor. Finally,

section 6 contains our conclusions and future directions.

2 Boundary RG flows and entanglement entropy

We consider a quantum field theory (QFT) on a d-dimensional spacetimeM: (x0, . . . xd−1)

with a boundary ∂M at y ≡ xd−1 = 0. The first d − 1 coordinates xα ∈ R1,d−2, while y

lives on the half-line y ≥ 0. The ‘bulk’ fields have some prescribed boundary conditions at

y = 0, and there may also be degrees of freedom localized at the boundary.

We will be interested in boundary conformal field theories (BCFTs) and the RG flows

that connect them.3 The bulk is always taken to be a CFT, and the boundary breaks the

2See [10] for a review with references.
3See e.g. [17] for a discussion of defects in CFTs.
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bulk conformal group to

SO(2, d) → SO(2, d− 1) . (2.1)

In other words, a conformal boundary preserves the dilatation, Poincaré and special con-

formal transformations that keep the boundary y = 0 fixed. We start from a UV boundary

CFT T0, and trigger a boundary RG flow by turning on a relevant deformation on the

boundary,

ST1 = ST0 +

∫
∂M

dd−1x gO (2.2)

where the dimension ofO at the UV fixed point is ∆O ≤ d−1, and we require ∆O > (d−3)/2

for unitarity along the boundary. The theory with relevant deformation is denoted by T1,

and we assume that the flow ends at an IR fixed point — a different BCFT.

We wish to understand if these flows are irreversible in some sense. In order to address

this, we will employ methods from quantum information theory, generalizing the recent

entropic proof of the g-theorem given in [9]. The basic idea is to compute the entangle-

ment entropy for a (half) sphere of radius R, centered at the boundary, and then use the

monotonicity of the relative entropy in order to characterize the irreversibility of the RG.

Before describing this in more detail, let us review the simpler case of the g-theorem.

For a 2d theory with boundary at x1 = 0, the contribution to the thermal entropy

due to the boundary can only decrease along boundary RG flows [7, 8]. This contribution,

denoted in general as log g, can also be captured by the entanglement entropy (EE) on an

interval x1 ∈ (0, R),

S(ρR) = −tr(ρR log ρR) , (2.3)

where ρR is the vacuum density matrix |0〉〈0| reduced to the interval. At a fixed point,

this is of the form [18]

S(ρR) =
c

6
log

R

ε
+ c0 + log g , (2.4)

where c is the bulk CFT central charge, ε is a short distance cutoff, and c0 is some regulator-

dependent constant. While the regulator dependence does not allow to obtain log g directly

from the EE, we can measure changes in impurity entropy by subtracting the EE between

the UV and IR fixed points, where the bulk contributions cancel out:

S(mR� 1)− S(mR� 1) = log
gUV

gIR
. (2.5)

Here m is some characteristic mass scale for the RG flow, for instance, m ∼ g1/(d−1−∆O)

in (2.2). Ref. [9] showed that positivity of the relative entropy implies S(mR � 1) −
S(mR � 1) ≥ 0. Furthermore, monotonicity of this quantity also allows to define a

monotonic interpolating g-function. Our goal is to extend this entropic g-theorem to higher

dimensions.

Motivated by these results, we will consider the vacuum EE for (half) spheres

(x1)2 + . . .+ (xd−2)2 + y2 = R2 , y ≥ 0 , (2.6)

in boundary field theories that undergo RG flows (2.2). This is shown in figure 1, together

with the associated causal domain. Unitarity and causality dictate that the EE depends
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Figure 1. The entangling region is determined by a half-sphere of radius R centered at the

boundary y = 0. The figure also shows the causal diamond of this region.

on geometric properties of the boundary of the entangling region, and is the same for any

Cauchy surface inside the causal diamond. As in [9, 19], our strategy will be to deform the

Cauchy surface towards the light-cone in order to equate the EE with the relative entropy.

In more detail, let σ be the vacuum reduced density matrix for the UV fixed point

theory T0,

σR = trV̄ (|0〉〈0|) , (2.7)

where |0〉 is the ground-state of T0, and V̄ is the region outside the half-sphere (2.6). And

let ρR be the corresponding reduced density matrix for the theory T1 along the flow (2.2).

The two theories are defined microscopically by the same operator content, but evolve with

different hamiltonians. The relative entropy

S(ρR|σR) = trV (ρR (log ρR − log σR)) (2.8)

measures the distinguishability between the two states. It is positive and monotonic,

namely it increases with the size of the region. Introducing the modular Hamiltonian of

the UV BCFT,

σR =
e−Hσ

trHσ
, (2.9)

the relative entropy can be rewritten as

S(ρR|σR) = trV (ρHσ)− trV (σHσ) + trV (ρR log ρR − σR log σR)

= ∆〈Hσ〉 −∆S (2.10)

with ∆〈Hσ〉 = trV (ρHσ)− trV (σHσ) and ∆S = S(ρR)− S(σR).

Following [9], the strategy will be to consider a Cauchy surface that approaches the

light-cone of the causal diamond associated to the entangling region. We will show that,
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under certain circumstances, ∆〈Hσ〉 → 0 in this limit. Then S(ρR|σR) = −∆S, and so

the change in the EE inherits the positivity and monotonicity properties of the relative

entropy. Before turning to this, though, let us discuss the general structure of the EE for

BCFTs.

2.1 Structure of the entanglement entropy

In order to understand the structure of the EE for a half-sphere of radius R in a BCFT,

let us first recall that the sphere entropy in a CFT without boundary is of the form

S(R) = µd−2R
d−2 + µd−4R

d−4 + . . .+

{
(−)

d−2
2 4A log(R/ε) d even .

(−)
d−1
2 F d odd .

(2.11)

For a CFT the coefficients µk ∼ ε−k are proportional to inverse powers of the cutoff.

The geometric origin of these terms, for spheres or their null deformations, was recently

explained in [20]. The area term proportional to Rd−2 comes from a volume integral

over the entangling surface, the term proportional to Rd−4 arises from a similar integral

containing the intrinsic curvature of the surface, and so on. The nonlocal contribution, the

logarithmic term in even d, comes from a Wess-Zumino action on the surface.

Moving on to the BCFT case, the entangling surface intersects the boundary on a d−3

sphere of radius R. As in [20], this will give rise to new divergent terms in the EE, which

can be written as integrals of local geometric quantities on this Sd−3 that respect Lorentz

invariance. Therefore, for d even (i.e. an odd (d− 1) - dimensional boundary), we have

S(R) = µd−2R
d−2+µ̃d−3R

d−3+µd−4R
d−4+. . .+(−1)

d−2
2 4A log(R/ε)+(−1)

d−2
2 F̃ , (2.12)

where quantities that come from the boundary are denoted with a tilde. The last term

behaves like a boundary F-function. Although the logarithmic term implies that F̃ will

change when choosing different regulators, differences in F̃ for boundary RG flows will be

physical. The simplest example is the case of the g-theorem discussed before, where log g

in (2.4) plays the role of F̃ . Examples of this for d = 4 were studied in [12]. The different

coefficients are powers of the cutoff for a BCFT but can contain other divergent or finite

contributions depending on the dimensionful scales of the theory as we approach a fixed

point.

For d odd, the arguments in [20] show that it is possible to have a Wess-Zumino action,

now localized on the Sd−3, consistent with Lorentz invariance. Hence, we expect an entropy

of the form

S(R) = µd−2R
d−2+µ̃d−3R

d−3+µd−4R
d−4+. . .+(−1)

d−3
2 4 Ã log(R/ε)+(−1)

d−1
2 F . (2.13)

The logarithmic term, absent for CFTs in odd dimensions, comes from the Wess-Zumino

action on Sd−3. This should correspond to a Weyl anomaly in the BCFT. To see this, one

can follow the arguments of [21] that related the logarithmic term in (2.11) to the Weyl

anomaly of the CFT. This involves a conformal mapping between the causal diamond of

the spherical region and the static patch of de Sitter. The EE entropy on the sphere then

becomes the thermal entropy of de Sitter. Rotating to euclidean time, this entropy is
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obtained from the logarithm of the partition function on Sd. The logarithmic term in the

entropy is then seen to be determined directly by the Weyl anomaly

〈Tµµ〉 = 2(−1)d/2AEd + . . . , (2.14)

where Ed is the Euler density,4 and we are not showing terms that vanish for a sphere.

Applying this to BCFTs with (2.13) maps the causal diamond of (2.6) to half of a causal

patch in de Sitter. In the euclidean version, this is a hemisphere of Sd, with boundary at

the equator. The logarithmic term in the thermal entropy should then come from a Weyl

anomaly localized at the equator,

〈Tµµ〉 = 2(−1)
d−1
2 Ã Ed−1 δ

(
θ − π

2

)
+ . . . , (2.15)

where θ ∈ (0, π/2) is the azimuthal angle of the hemisphere. See also [15, 22, 23].

The case of a 3d theory with boundary will play an important role below. There is a

“Graham-Witten” anomaly from the 2d boundary [24]

〈Tµµ〉 = − b

24π
R(2) δ

(
θ − π

2

)
+ . . . (2.16)

Then we have

Ã =
b

12
. (2.17)

The b-anomaly decreases along boundary RG flows [11]. Our goal will be to establish

this, together with natural extensions to higher dimensions (area-theorems) using entropic

methods.

3 Analysis of the relative entropy

In this section we analyze the relative entropy (2.10) between theories T0 and T1. After

determining the structure of the modular Hamiltonian and properties of the stress tensor,

we take the limit where the Cauchy surface approaches the light-cone of the causal domain.

3.1 Modular Hamiltonian and stress-tensor

For a CFT and a spherical region, the modular Hamiltonian is local, and given by

H =

∫
Σ
dσ ηµ ξν Tµν , (3.1)

where ηµ is a unit vector normal to the Cauchy surface Σ, and ξν is the Killing vector for

a conformal transformation that keeps the sphere fixed,

ξν =
π

R

(
R2 − (x0)2 − (xi)2,−2x0xi

)
. (3.2)

Recall that this can be proved by a conformal map between the causal domain of the sphere

and the Rindler wedge [21, 25]; here the density matrix is thermal and the modular flow

corresponds to boosts.

4The integral of Ed on a d-dimensional sphere gives 2.
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This approach can be applied to BCFTs as well to establish that (3.1) is valid for a

half-sphere centered at the boundary. The conformal transformation of [21] in (−+ . . .+)

signature reads

xµ = 2
Xµ + (X ·X)Cµ

1 + 2(X · C) + (X ·X)(C · C)
−R2Cµ . (3.3)

We can perform it along the direction transverse to the boundary, Cµ∂µ = R−1∂y. The

boundary is then uniformly accelerated inside the Rindler wedge, with acceleration 1/R.

This respects the boost symmetry, and so the density matrix is again thermal with respect

to the boost Hamiltonian. Therefore, the modular Hamiltonian is still given by the Rindler

hamiltonian, and transforming back to the sphere gives (3.1).5 We stress that Tµν here

is the stress-tensor operator of the BCFT T0, because we are using the conformal map

between the sphere and the Rindler wedge.

Having established the form of the modular hamiltonian Hσ for the BCFT theory T0,

let us analyze the contribution ∆〈Hσ〉 to the relative entropy, for a given Cauchy surface

Σ. Since ξνTµν is a conserved current, Hσ is a conserved charge on Σ. This means that, as

an operator, Hσ is independent of the choice of Cauchy surface inside the given domain of

dependence. All the dependence on Σ has to come from the state. The key point, discussed

in [9, 19], is that the state ρR brings in explicit dependence on Σ. The reason is that, in

order to compare both states ρ and σ, we have to map the algebra of operators φ̃λ(x) of T1

to that of T0, φλ(x), at a given Cauchy surface Σ. In the Heisenberg representation, these

algebras evolve with different Hamiltonians, which means that the map depends on Σ,

UΣ φ̃λ(x)U †Σ = φλ(x) , x ∈ Σ . (3.4)

The corresponding map for the state, ρ → UΣρU
†
Σ, will then also depend on the choice of

the Cauchy surface.

To make this more explicit, let us consider the change in the stress-tensor expectation

value between the two states,

∆〈Tµν(x)〉 = tr(ρRTµν(x))− tr(σRTµν(x)) . (3.5)

Let us split the energy-momentum tensor into a bulk part, that is continuous at the bound-

ary, and localized terms,

Tµν(x) = T bulk
µν (x) + δ(y) tµν(x) , (3.6)

with tµν associated to the presence of the boundary. First, away from the boundary ρR
and σR evolve with the same Hamiltonian — they only differ by the relevant perturba-

tion (2.2) localized at y = 0. This means that ∆〈T bulk
µν (x)〉 is independent on the choice of

Cauchy surface. This is a local quantity, which can only depend on y (there is translation

invariance on the other coordinates), and on the metric gµν and the normal Nµ∂µ = ∂y.

We parametrize

∆〈T bulk
µν (x)〉 = β1(y)(gµν −NµNν) + β2(y)NµNν . (3.7)

5See also [26] for this result; this work also discusses a map with Cµ tangential to the boundary.
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Imposing the conservation condition ∂µT
µ
y = 0 away from the defect sets ∂yβ2 = 0, so that

β2 is constant. But since the expectation value has to decay away from the defect, we have

β2 = 0. Also, Tµν is the BCFT stress tensor and so it is traceless, Tµµ = 0; this sets β1 = 0.

Therefore,

∆〈T bulk
µν (x)〉 = 0 , (3.8)

and we are only left with a possible contribution proportional to δ(y). This is a key

property of codimension one defects; as discussed in the appendix, it is not valid for other

codimensions.

On the boundary ∂M, the state ρR depends on the choice of Cauchy surface Σ ∩
∂M. We can write the stress-tensor expectation value in terms of local geometric objects

gµν , Nµ, ηµ, and curvatures:

∆〈Tµν(x)〉 = δ(y) (α1(gµν−NµNν)+α2ηµην+α3NµNν+α4(Nµην+Nνηµ))+O(ε2K2, . . .) ,

(3.9)

where we indicated that contributions from curvatures are suppressed by the short-distance

cutoff ε [19]. In conformal perturbation theory around the UV fixed point we expect, on

dimensional grounds,

αi ∼ g2ε(d−1)−2∆O (3.10)

for ∆O ≥ (d−1)/2. For smaller operator dimension, a nonperturbative finite term of order

αi ∼ g(d−1)/(d−1−∆O) can appear. See e.g. [27–29] for examples of this in the entanglement

entropy.

Plugging (3.9) into (3.1), and taking into account that ξy = 0 at y = 0, we find that the

integral is restricted to the component Σ ∩ ∂M of the entangling surface at the boundary,

and that all surviving terms are proportional to the contraction ηαξα:

∆〈Hσ〉 =

∫
Σ∩∂M

dσ α ηαξα +O(ε2K2) . (3.11)

Here α denotes a linear combination of the αi in (3.9); in what follows we will only need

their order of magnitude (3.10). Note that ∆〈Hσ〉 becomes an integral of a local quantity

on the boundary.

We conclude that the dependence of ∆〈Hσ〉 on Σ is given simply by the flux of the

conformal Killing vector ξµ through Σ∩∂M. This is analogous to what happened for bulk

RG flows in [19], although here the bulk part is conformal, and all the contributions are

restricted to the boundary.

3.2 The light-cone limit

The last step is to take a Cauchy surface that approaches the null boundary of the causal

domain of dependence. The modular flow keeps the boundary of the causal domain fixed,

so ξµ becomes null there. As a result,

ξαηα

∣∣∣
Σnull

→ 0 . (3.12)
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When this is valid, ∆〈Hσ〉 → 0, and hence the change in the EE equals the relative entropy

between the two states,

S(ρR|σR) = −∆S . (3.13)

However, the null limit has to be taken in a controlled way, because (3.12) multiplies a

possibly divergent contribution (3.10). Following [19], we can approach the null limit with

a Cauchy surface forming a hyperboloid of radius a, obtaining

∆〈Hσ〉 ∼ (g2εd−1−2∆O) (a2Rd−3) . (3.14)

The first factor here comes from the expansion (3.10), while a2Rd−3 is the contribution of∫
ξαηα for a Cauchy surface that is a hyperboloid of curvature scale of order a−1. This

scaling with R should be contrasted with the dependence ∆〈Hσ〉 ∼ Rd−1 on a constant

time slice, which always dominates over the area term ∆S ∼ Rd−3 associated to Σ ∩ ∂M.

The null limit reduces the scaling with R by two powers, replacing this by a2.

Given a short distance cutoff ε, we can have at most a ∼ ε, so (3.14) becomes

∆〈Hσ〉 ∼ g2Rd−3 εd+1−2∆O . (3.15)

In this way, ∆〈Hσ〉 → 0 in the null limit for relevant perturbations in the range

∆O <
d+ 1

2
. (3.16)

For a (d − 1)-dimensional boundary, the perturbation is relevant if ∆O ≤ d − 1. For d =

2, 3, (3.16) then imposes no restrictions (it covers the whole range of relevant deformations),

while for higher d it does. In this regime, (3.13) applies. For ∆O > (d+ 1)/2, the modular

Hamiltonian contribution to the relative entropy will compete with the area term from the

EE, and we cannot fix the sign of ∆S.

4 Consequences in different dimensions

We now restrict to (3.16), and analyze the consequences of (3.13).

First, in d = 2 the EEs of the two states can be written as (see (2.12))

S(σR) =
c

6
log

R

ε
+ c′0 + log gUV

S(ρR) =
c

6
log

R

ε
+ c′0 + log g(R) , (4.1)

where we have defined a running g-function log g(R). In the IR, g(R)→ gIR, the impurity

entropy for the IR BCFT. The relative entropy then reads

S(ρR|σR) = − log
g(R)

gUV
. (4.2)

Monotonicity of the relative entropy requires g′(R) ≤ 0. This is the entropic g-theorem

proved in [9].
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In d = 3, corresponding to a 2d boundary, (2.12) gives the fixed point expression

S(σR) = µ1
R

ε
− F +

bUV

3
log

R

ε
(4.3)

where we used ÃUV = bUV/12, the boundary central charge in (2.16). The entropy S(ρR)

has a more complicated radial dependence along the RG flow, but near the IR fixed point,

S(ρR) = µ1
R

ε
− F +

bIR
3

log(mR)− bUV

3
log(mε) . (4.4)

Here m ∼ g1/(d−1−∆O) is a typical mass scale for the RG flow. Then the relative entropy

for mR� 1 becomes

S(ρR|σR) ≈ 1

3
(bUV − bIR) log(mR) . (4.5)

Positivity of the relative entropy thus implies

bUV ≥ bIR , (4.6)

so that the boundary b-anomaly decreases along boundary RG flow. The result (4.6) was

proved using dilaton methods in [11].

Lastly, in higher dimensions and for long distances mR� 1, we have

∆S = (µ̃IR
d−3 − µ̃UV

d−3)Rd−3 + . . . (4.7)

In the range (3.16), eq. (3.13) together with positivity of the relative entropy imply that

µ̃UV
d−3 ≥ µ̃IR

d−3 . (4.8)

This is a new result on the irreversibility of boundary RG flows, established with quan-

tum information theory methods. It implies that the leading area term associated to the

boundary can only decrease along boundary RG flows. From [30], the flow in the area

term in relativistic QFTs is related to the renormalization of Newton’s constant. Thus, we

expect that (4.8) may be relevant in theories of localized gravity [31].

In summary, we have found that, in QFTs with boundaries, positivity of the relative

entropy on a null Cauchy surface leads to an inequality that unifies the g-theorem, the

b-theorem and an area theorem in higher dimensions. The change in these quantities

thus acquires a precise information-theoretic meaning as a meassure of distinguishability

between the reduced states of the UV and IR fixed points in boundary RG flows.

5 A sum rule in boundary QFTs

For RG flows in relativistic QFTs without boundary, the change in the area term

∆µd−2 = µIR
d−2 − µUV

d−2 (5.1)

between the UV and IR fixed points obeys a sum rule (see [30, 32–34]),

∆µd−2 = − π

d(d− 1)(d− 2)

∫
ddxx2 〈Θ(x)Θ(0)〉 , (5.2)
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with Θ(x) = Tµµ (x). Given that for boundary RG flows we just established that

∆µ̃d−3 = µ̃IR
d−3 − µ̃UV

d−3 ≤ 0 , (5.3)

it is natural to ask whether a similar sum rule exists for this quantity.

In order to address this, let us follow [30], and consider a half-sphere of radius R→∞.

The entangling region approaches a Rindler wedge along (say) x1 ≥ 0. The boundary

preserves boosts along x1, so the modular Hamiltonian is given by

H = −2π

∫
w1≥0 , wd−1≥0

dd−1 ~ww1 T00(w) , (5.4)

for any boundary QFT (not necessarily at a fixed point). Note that here w1 = 0 is the

Rindler edge, while wd−1 = 0 is the position of the boundary.

Taking R→∞, S(ρR) is dominated by the IR fixed point, and hence

∆S = S(ρR)− S(σR) ≈ (µ̃IR
d−3 − µ̃UV

d−3)Rd−3 ; (5.5)

all the other terms are subleading. The change ∆µ̃d−3 can be obtained by performing a

small variation of R,

R
d∆S

dR
= (d− 3) ∆S . (5.6)

Recall that under a small change of state δρ, the first law allows to relate the variation in

the entropy to the change in the modular hamiltonian, δS = tr(δρH). We can view (5.6)

as a small change in the state due to a dilatation. By applying the first law to the variation

of entropy in each of the states we get

∆S =
1

d− 3

∫
ddx 〈Θρ(x)Hρ〉 −

1

d− 3

∫
ddx 〈Θσ(x)Hσ〉

=
1

d− 3

∫
ddx δ(xd−1)〈θρ(x)Hρ〉 , (5.7)

where we used that the trace of the stress-tensor vanishes in the BCFT state σ, and

introduced

Θρ(x) = δ(xd−1)θρ(x) , θρ = tr(tρ) . (5.8)

Also, Hρ and Hσ are the modular Hamiltonians of the theories T1 and T0 respectively. Intu-

itively,
∫
ddxΘ(x) is implementing a global scale transformation, and its only nonvanishing

contribution comes from the scale dependence at the boundary.

Replacing (5.4) into (5.7),

∆S = − 2π

d− 3

∫
ddx δ(xd−1)

∫
dd−1ww1 〈θ(x)T00(w)〉 , (5.9)

where the stress-tensors are evaluated in the theory T1, but we have eliminated the sub-

indices ρ to streamline the formulas.

As we just reviewed, the factor of
∫
ddx δ(xd−1)θ(x) is implementing a global scale

transformation. The quantity
∫
ddx δ(xd−1) 〈θ(x)Tµν(w)〉 is traceless and conserved in w

– 11 –



J
H
E
P
0
4
(
2
0
1
9
)
1
6
6

for bulk points, and therefore we can use the same arguments as in section 3.1 to conclude

it has to vanish for w in the bulk. In fact this is the change of the bulk stress tensor

expectation value under dilatations, and the bulk stress tensor expectation value vanishes

identically. Only the boundary component of the stress-tensor will contribute to (5.9),

so here we can replace T00(w) → δ(wd−1)t00(w). In this way, we end up with a purely

boundary expression

∆S = − 2π

d− 3

∫
ddx δ(xd−1)

∫
w1≥0

dd−1w δ(wd−1)w1 〈θ(x)t00(w)〉 . (5.10)

Translation invariance along the boundary implies that the integrand is independent of

the spatial coordinates (w2, . . . , wd−2) transverse to the Rindler edge w1 = 0. These

w-integrals give simply a factor of the boundary area Rd−3, and we arrive to

∆µ̃d−3 = − 2π

d− 3

∫
∂M

dd−1x

∫
w1>0

dw1w1 〈θ(x)t00(w)〉 . (5.11)

Finally, we need to relate this to an integral of the two-point function of θ(x). Per-

forming a diffeomorphism transformation tangent to the boundary (i.e. δxµ(xα, xd−1) =

vµ(xα, xd−1), with vd−1(xα, 0) = 0) implies the conservation equation [8]

∂αt
αβ = T β,d−1

bulk . (5.12)

We argued in section 3.1 that Tµνbulk = 0 in vacuum expectation value. Since in (5.11) we

have a global scale transformation on the vacuum expectation value 〈tαβ〉, we can here use

∂αt
αβ = 0 inside the correlation function. In more detail,

∂

∂wα

∫
∂M

dd−1x 〈θ(x)tαβ(w)〉 = R
∂

∂R
〈 ∂

∂wα
tαβ(w)〉 = R

∂

∂R
〈T β,d−1

bulk (w)〉 = 0 . (5.13)

This conservation law means that the integrated 〈θ(x)tαβ(w)〉 must involve the following

Lorentz-covariant structure:∫
∂M

dd−1x〈θ(x)tαβ(w)〉 =

∫
∂M

dd−1x(gαβ∇2 − ∂α∂β)F (s) , (5.14)

with s = x−w, and we used that this correlator is symmetric in α, β. In particular, taking

the trace over the d− 1 coordinates of the boundary gives

〈θ(x)θ(w)〉 = (d− 2)∇2F (s) . (5.15)

Let us now perform the integral,∫
∂M

dd−1x

∫
w1>0

dw1w1 〈θ(x)t00(w)〉 =

∫
∂M

dd−1x

∫
w1>0

dw1w1 ~∇2F (s)

=

∫
∂M

dd−1xF (x) , (5.16)

where we integrated by parts twice. On the other hand,∫
∂M

dd−1xx2 〈θ(x)θ(0)〉 = (d− 2)

∫
∂M

dd−1xx2∇2F (x)

= (d− 1)(d− 2)

∫
∂M

dd−1xF (x) , (5.17)

after integration by parts.
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Comparing both expressions, we derive the sum rule

∆µ̃d−3 = − 2π

(d− 1)(d− 2)(d− 3)

∫
∂M

dd−1xx2 〈θ(x)θ(0)〉 . (5.18)

This sum rule agrees with the sign ∆µ̃d−3 ≤ 0 deduced from positivity of the relative

entropy.

The case d = 3 can be obtained by taking into account that in this case the behav-

ior is logarithmic instead of a power law, or alternatively from the equation above by

adimensionalizing the integral using a mass scale m

∆S = −(mR)d−3 2π

(d− 1)(d− 2)(d− 3)

∫
∂M

dd−1xm−(d−3)x2 〈θ(x)θ(0)〉 , (5.19)

and expanding for d→ 3 we have

∆S = −π log(mR)

∫
∂M

d2xx2 〈θ(x)θ(0)〉 . (5.20)

Comparing with (2.17), (4.3), and (4.4), this gives

bUV − bIR = 3π

∫
∂M

d2xx2 〈θ(x)θ(0)〉 . (5.21)

This coincides with the sum rule obtained in [11] by a different method.

Note that this applies to d ≥ 3, so that it does not provide a sum rule for the change

in g in d = 2. The reason is that for d = 2, the log(gIR/gUV) contribution to ∆S does not

scale like a power of R, and so it cannot be deduced from the Rindler limit. We can obtain

the change in log g by integrating
∫
dR (d∆S/dR), which makes it clear that the modular

Hamiltonian over all scales R would be needed.

6 Conclusions and future directions

In this paper we proved a series of theorems about the monotonicity of the first subleading

term in the entanglement entropy of CFTs with planar boundaries. We accomplished this

by considering a null Cauchy surface, and equating the change in the EE with the relative

entropy between the UV and IR states. This provides a unified picture for the g-theorem,

b-theorem, and boundary area theorems in higher dimensions. Several questions arise on

possible generalizations of our results. We will summarize our main future directions in

what follows.

One direction is to consider defects with higher codimension. Our approach here does

not apply to these cases because, as we review in the appendix, the bulk contribution (3.7)

to the modular Hamiltonian does not vanish. It is not clear yet how to resolve this issue.

In this context, the recent work [15] conjectured that the defect free energy may provide a

monotonic quantity for defect RG flows. For codimension one defects this agrees with the

change ∆S in the EE entropy, but for higher codimensions both quantities are different. It

would be interesting to find an information-theoretic version of this conjecture, and analyze

its validity.
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We saw that for d = 3, the first subleading term in the EE of a BCFT corresponds to

a logarithmic divergence. This is a universal term, in the sense that it is independent on

the way we choose to regularize the theory, and has a nice interpretation in terms of the

boundary Weyl anomaly b. For d > 3 the universal terms are even more subleading and

we do not have access to their monotonicity properties using only the relative entropy. For

CFTs without boundaries, one can access the universal terms in d = 3, 4 using the strong

subaditivity of the EE and the Markovian property of the vacuum on the null cone. This

gives the F -theorem and the entropic a-theorem [4, 6]. It would be interesting to explore

if some of these results can be extended to BCFTs.

Finally, in section 5 we have shown that the change of the subleading terms of the

EE under an RG flow is related to a sum rule for the two point function of the trace

of the boundary stress-energy tensor. In QFTs with full Poincare invariance, Adler and

Zee [35, 36] showed that this sum rule for the two point function is related to the renor-

malization of the Newton’s constant. It would be interesting to understand if there are

similar implications for the graviton effective action in field theories with boundaries.
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A Comments on higher-codimension defects

In this appendix we briefly discuss some properties of the stress-tensor in theories with

higher codimension defects. Most of this is standard and well-known; we include it to

highlight how the approach in the main text fails when the codimension is not one.

We have a bulk CFT in d-dimensional flat spacetime, coupled to a defect of codimension

n. We turn on a relevant deformation localized at the defect; as before, σ denotes the

density matrix of the UV fixed point, while ρ is the density matrix for the theory along

the flow.

We split the coordinates as

xµ = (xα, ya) , µ = 0, . . . , d− 1 ; α = 0, . . . , d− n− 1 ; a = d− n, . . . , d− 1 . (A.1)

The defect is placed at

ya = 0 . (A.2)

In the main part of this work we focused on n = 1. Our goal is to evaluate ∆〈T bulk
µν (x)〉,

namely the change in expectation value of the defect CFT stress tensor between the states

σ and ρ. This will generalize the discussion in section 3.1 to other codimensions.

As discussed before, ∆〈T bulk
µν (x)〉 is independent of the choice of Cauchy surface. Oper-

atorially, T bulk
µν is conserved and traceless away from the defect. Furthermore, by rotational
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invariance it can only depend on y = (yaya)
1/2. The conservation condition ∂aT

aα = 0

requires

∆〈Taα〉 = 0 . (A.3)

The remaining nonzero components can then be parametrized as

∆〈Tαβ〉 = h(y)ηαβ (A.4)

∆〈Tab〉 = f1(y)δab + f2(y)

(
yayb
y2
− δab

n

)
.

Here we used Poincaré invariance along the defect to constrain Tαβ , and rotational invari-

ance in the transverse directions to fix Tab.

Requiring vanishing trace relates

f1(y) = −d− n
n

h(y) . (A.5)

The conservation condition ∂aT
ab = 0 gives, on the other hand,

n− 1

n

(
f ′2(y) +

n

y
f2(y)

)
+ f ′1(y) = 0 . (A.6)

So in general we have an arbitrary free function, which we may take as h(y).

The form of h(y) is further determined if the vacuum state is conformally invariant:

since there is no dimensionful coupling, and the stress tensor has dimension d, h(y) = h0/y
d.

As a result,

∆〈Tαβ〉 =
h0

yd
ηαβ (A.7)

∆〈Tab〉 = −d− n
n

h0

yd
δab +

d

n− 1

h0

yd

(
yayb
y2
− δab

n

)
∆〈Taα〉 = 0 .

Only the constant h0 is arbitrary, and this depends on the type of conformal defect.

For n = 1, the f2 contribution in (A.4) vanishes identically, and then setting f2 =

0 in (A.6) requires f1 to be a constant. This constant has to vanish because the one-

point function decays away from the defect. Then h(y) has to vanish as well, in order to

satisfy (A.5). This recovers ∆〈T bulk
µν (x)〉 = 0 of the main text. On the other hand, we see

that for higher codimensions ∆〈T bulk
µν (x)〉 is non-vanishing. This means that the modular

Hamiltonian contribution to the relative entropy will be generically nonzero and larger

than ∆S. The approach of sections 3, 4 does not apply here.
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[17] M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP

04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

[18] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42

(2009) 504005 [arXiv:0905.4013] [INSPIRE].

[19] H. Casini, E. Testé and G. Torroba, Relative entropy and the RG flow, JHEP 03 (2017) 089

[arXiv:1611.00016] [INSPIRE].
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