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The relative entropy between very high-energy localized excitations and the vacuum, where both states
are reduced to a spatial region, gives place to a precise definition of a local temperature produced by
vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to
arbitrary regions. The local temperatures can be read off from the short distance leading have a universal
geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This
equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions
of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit
expression for the geometry of a wall or strip.
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I. INTRODUCTION

Recently there has been a growth of interest in the study
of modular Hamiltonians (see, for example, [1–6]). The
importance of this operator is due to its use in different
disciplines of theoretical physics like quantum information,
quantum field theory, condensed matter and quantum
gravity. One of the applications to quantum information
arises in the fact that the modular Hamiltonian is related to
the relative entropy, which measures the distinguishability
between quantum states. Moreover, in condensed matter,
for example, its spectrum is useful to identify topological
states [7], and from the quantum gravity point of view the
modular Hamiltonian is involved in the first law of
entanglement [8], which is a generalization of the first
law of thermodynamics to nonequilibrium systems. It was
shown that from the first law one can obtain the linear
Einstein equations in a holographic theory [9,10]. In
addition, the modular Hamiltonian was used to understand
the Bekenstein bound as well as prove other entropy
bounds arising from black hole physics [11–18]. In
quantum field theory, it is part of the Tomita-Takesaki
theory that plays an important role in the structure of the
algebraic axiomatic approach [19,20].
The modular Hamiltonian HV arises from writing the

reduced density matrix ρV of the vacuum on a region V, in a
thermal-like form,

ρV ¼ ce−HV : ð1:1Þ

Remarkably, in [21] it was shown that for any relativistic
quantum field theory, and when the region V is half spatial
plane, the modular Hamiltonian is proportional to the stress
energy tensor

HV ¼ 2π

Z
V
dd−1xx1T00ðxÞ: ð1:2Þ

Due to the Killing symmetry of the Rindler wedge (the
domain of dependence of half-space) the expression is
completely local and the unitaries eiτHV generate a local
modular flow of field operators, which in this case
coincides with boost transformations. This same expression
(1.2) is the reason behind the Unruh temperature for
accelerated observers [22]. These observers have time
evolution dictated by the boost generator and accordingly
can identify the vacuum state as a thermal state with respect
to this evolution operator.
In [23] a generalization of Unruh temperature suitable to

arbitrary regions was proposed. This comes from a reinter-
pretation of Unruh temperature in terms of the relative
entropy and is directly related to the structure of local terms
in the modular Hamiltonian. The relative entropy between
two states ρV , ρ1V (in the same region) is given by

Srelðρ1V jjρVÞ ¼ ΔhHVi − ΔS; ð1:3Þ

where ΔhHi ¼ trðρ1VHVÞ − trðρVHVÞ is the variation in
expectation values of the modular Hamiltonian and ΔS ¼
S1 − S is the difference in the entanglement entropies.
Taking as ρ1 a localized high-energy excitation above the
vacuum state around a point x ∈ V, the difference in
entanglement entropies is negligible with respect to
ΔhHi, and the relative entropy in half-space is given by

Srel ∼ ΔhHVi ∼ βðxÞE; ð1:4Þ

where E is the excitation energy and

βðxÞ ¼ 2πx1 ð1:5Þ

is the coefficient of T00 in (1.2); this coincides with the
inverse Unruh temperature for the accelerated observer
passing through the point with coordinate x1.
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Relative entropy measures the distinguishability between
states. More precisely, the probability of confounding the
two states after N judiciously chosen experimental mea-
surements declines with N as e−SrelN ; in this sense relative
entropy is an experimentally accessible quantity (quantum
Stein lemma [24,25]). The measurements to differentiate
the two states have to be done inside the region V, including
its causal domain of dependence. In this sense, Unruh
temperature arises because the vacuum cannot be perfectly
distinguished from the excitation with a finite number of
measurements involving the restricted class of operators at
disposal in V.1 This is a direct consequence of entangle-
ment between V and the rest of the space.
In the present case, as the entropy is small, the relative

entropy is given by the Boltzmann factor e−H correspond-
ing to the modular Hamiltonian. One can roughly say that
there is a probability ∼e−Srel of finding the excitation in the
vacuum.
In [23] it was noticed that relative entropy monotonicity

implies that for a general region and quantum field theory
we also have an analogous expression for the relative
entropy between the vacuum and a localized high momen-
tum excitation

Srel ∼ ΔhHVi ∼ βVðx; p̂ÞE: ð1:6Þ

That is, the relative entropy scales with the energy of the
excitation, but now, in contrast to the case of the Rindler
wedge, we have an inverse temperature β that might also
depend on the direction of the excitation momentum.2

In this case, the local structure of the modular
Hamiltonian cannot be given exclusively in terms of the
energy density operator, while it still has to have the same
scaling dimensions.3 We call βðx; p̂Þ−1 to the local temper-
ature corresponding to the direction p̂. High β, or low
temperature, corresponds to higher distinguishability.
We argued in [23] that there is some degree of univer-

sality in these local temperatures and that the answer should
be dictated essentially by the geometry. In order to compute
these temperatures we have to study the local part of the

modular Hamiltonian. This is in a certain sense the opposite
limit to the one pertaining to the first law of entanglement.
This later gives ΔhHVi ¼ ΔS for small deviation, low
distinguishability, between the states. Here we are inter-
ested in the limit of high distinguishability and high relative
entropy.
In the present paper we build on our previous work and

study the local temperatures and the local part of the
modular Hamiltonian in d dimensions for free fields. We
first write the general form of the spectrum of the modular
Hamiltonian in a novel fashion in terms of solutions of the
field equations in Euclidean space with some multiplicative
boundary conditions in V. Then, we use an eikonal
approximation to write these solutions. This captures the
relevant physics of the problem and allows us to write the
local terms of H for free scalar and fermion fields in a
simple way. These are given in terms of the solutions
of a purely geometric “eikonal” problem involving two
orthogonal gradient fields A⃗ and B⃗ of the same modulus. In
d ¼ 2 these become the Cauchy-Riemann equations for
holomorphic functions. We show the local inverse temper-
atures are given by the modulus of these vectors on the
points of V.
The eikonal problem and the local temperatures are the

same for free scalar and fermions of any mass. As an
example, we compute the local temperatures for a striplike
region and find the explicit expression for βðx; p̂Þ. This is
indeed dependent on direction.

II. SPECTRUM OF THE MODULAR
HAMILTONIAN FOR FREE FIELDS

We take a compact spatial region V at x0 ¼ 0. We write
the vacuum reduced density matrix as

ρ ¼ trV̄ j0ih0j ≔ ce−H; ð2:1Þ

where H is the modular Hamiltonian and V̄ is the comple-
ment of V. For free fields, H is quadratic in the fields, and
then it is determined by certain numerical kernels (see, for
example, the review [27]).
In order to understand the local structure of these

modular Hamiltonians one needs a handle on the spectrum
of these kernels. This essentially amounts to diagonalize
the field correlator kernels inside V. This is an integral
equation problem and it is not easy to manage even in the
high-energy limit in which we are interested in this paper.
For this reason we will find it convenient to transform the
kernel eigenvalue problem into another equivalent one
which corresponds to find solutions of the field equations
in d-dimensional Euclidean space with multiplicative
boundary conditions on the (d − 1)-dimensional region
V. In this section, we explain this relation for scalar and
fermion fields. With this result in hand, in the next section
we will be in position to use an eikonal approximation to

1See [26] for another interesting interpretation of Unruh
temperature in terms of Carnot efficiencies.

2For the case of Rindler space the modular Hamiltonian is just
the boost operator which can be approximated by the Hamil-
tonian of the accelerated observer, and hence in that case the
a priori knowledge of the, particularly simple, modular Hamil-
tonian leads to a workable experimental setup given by the
Unruh–de Witt accelerated detectors. These are particular con-
venient and optimal experiments that one can do inside the
Rindler wedge to measure this temperature. For other regions one
would have to resort to other kinds of experiments to approximate
relative entropy. A practical way to do this, analogous to the
Unruh–de Witt detector, is unknown to the authors.

3For free fields, the local term with the right scaling dimension
is obtained by integrating two fields at two points with a scaling
function of the distance between the points.
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the eigenvector problem in Euclidean space to find the
structure of the local terms in the modular Hamiltonian.

A. The scalar field

We will consider the theory of a free scalar field in d
dimensions. This field satisfies the Klein-Gordon equation
and the equal time commutation relation ½ϕðx⃗Þ; πðy⃗Þ� ¼
iδðd−1Þðx⃗ − y⃗Þ with πðx⃗Þ ≔ ∂0ϕðx⃗Þ. The modular
Hamiltonian for a spatial region V is given as a quadratic
expression [27,28]

H ¼ 1

2

Z
V
dd−1xdd−1y½πðx⃗ÞNðx⃗; y⃗Þπðy⃗Þ

þ ϕðx⃗ÞMðx⃗; y⃗Þϕðy⃗Þ�: ð2:2Þ

The kernels are given in terms of the equal time correlators

Xðx⃗ − y⃗Þ ≔ h0jϕðx⃗Þϕðy⃗Þj0i; ð2:3Þ

Pðx⃗ − y⃗Þ ≔ h0jπðx⃗Þπðy⃗Þj0i: ð2:4Þ

Restricting the range of x and y to V, these define two
integral operators in V, which we call for simplicity X and
P. Defining C ≔

ffiffiffiffiffiffiffi
XP

p
, we have [27]

N ¼ 1

C
log

�
Cþ 1

2

C − 1
2

�
X; ð2:5Þ

M ¼ P
1

C
log

�
Cþ 1

2

C − 1
2

�
: ð2:6Þ

In order to solve the spectrum of X and P as kernels in V,
let us first consider a function SðxÞ satisfying the Klein-
Gordon equation in the Euclidean space x ≔ ðx0; x⃗Þ ∈ Rd,

ð−∇2 þm2ÞSðxÞ ¼ 0; ð2:7Þ

everywhere except at the (d − 1)-dimensional region V. On
V, we impose the boundary conditions

Sþðx⃗Þ ¼ lim
x0→0þ

Sðx0; x⃗Þ ¼ λ lim
x0→0−

Sðx0; x⃗Þ

¼ λS−ðx⃗Þ ∀ x⃗ ∈ V: ð2:8Þ

Further, we require the regularity condition at infinity

lim
jxj→∞

SðxÞ ¼ 0; ð2:9Þ

and demand that jSj remains bounded at the boundary of
the region V. This last condition gives the right uniqueness
class of the solutions (see Appendix A) to treat the density
matrix of the vacuum state [27]. Additional solutions exist
with divergences for x → ∂V, but these are related to

problems where a magnetic vortex is placed on the
boundary.
We define M ≔ Rd − V for the region in the

Euclidean plane where (2.7) is satisfied. Consider now
the Euclidean Green function GS for the scalar field in the
full Euclidean space without the cut at V,4

Gsðx − yÞ ¼ 1

ð2πÞd
Z
Rd

1

p2 þm2
eip·ðx−yÞ

¼ md−2

ð2πÞd=2 ðmjx − yjÞ1−d
2K1−d

2
ðmjx − yjÞ; ð2:10Þ

where p · x ¼ pμxμ is the Euclidean scalar product. The
scalar Green function (2.10) satisfies the inhomogeneous
equation

ð−∇2
x þm2ÞGSðx − yÞ ¼ δðdÞðx − yÞ: ð2:11Þ

Combining (2.7) and (2.11) we have the current

JxμðyÞ ¼ ∂y
μGsðx − yÞSðyÞ − Gsðx − yÞ∂μSðyÞ; ð2:12Þ

which is conserved everywhere in M except at the
coincident points x ¼ y, where

∂μJxμðyÞ ¼ −δðdÞðx − yÞSðyÞ: ð2:13Þ

Integrating this equation on M we obtain from the Stokes
theorem

−SðxÞ ¼
Z
M

ddy∂μJxμðyÞ

¼ −
Z
V
dd−1yð∂y

0Gsðx − ð0; y⃗ÞÞSþðy⃗Þ

−Gsðx − ð0; y⃗ÞÞ∂0Sþðy⃗ÞÞ

þ
Z
V
dd−1yð∂y

0Gsðx − ð0; y⃗ÞÞS−ðy⃗Þ

−Gsðx − ð0; y⃗ÞÞ∂0S−ðy⃗ÞÞ; ð2:14Þ

where we drop the boundary contribution at infinity since
the Green function (2.10) vanishes exponentially at infinity.
Using the boundary condition (2.8) we simplify (2.14) to
get

SðxÞ ¼ ð1 − λ−1Þ
Z
V
dd−1yð∂y

0Gsðx − ð0; y⃗ÞÞSþðy⃗Þ

−Gsðx⃗ − ð0; y⃗ÞÞ∂0Sþðy⃗ÞÞ; ð2:15Þ

which gives us the function SðxÞ on the Euclidean plane
from the values of the function and its time derivative on the

4Kν is the modified Bessel function of second kind of
order ν.
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region V. Now, we are going to take the limit of (2.15)
when x goes to V from above, that is, x → ð0þ; x⃗Þ ∈ V
with y⃗ ∈ V. We use

lim
x→Vþ;y∈V

Gsðx − yÞ ¼ Xðx⃗ − y⃗Þ; ð2:16Þ

lim
x→Vþ;y∈V

∂y
0Gsðx − yÞ ¼ 1

2
δðd−1Þðx⃗ − y⃗Þ; ð2:17Þ

lim
x→Vþ;y∈V

− ∂x
0∂y

0Gsðx − yÞ ¼ Pðx⃗ − y⃗Þ: ð2:18Þ

Calling

uλðx⃗Þ ≔ Sþðx⃗Þ; ð2:19Þ

vλðx⃗Þ ≔ ∂0Sþðx⃗Þ; ð2:20Þ

and replacing (2.16) and (2.17) in (2.15), we getZ
V
dd−1yXðx⃗ − y⃗Þvλðy⃗Þ ¼

1þ λ

2ð1 − λÞ uλðx⃗Þ: ð2:21Þ

An analogous equation follows from taking a ∂x
0 derivative

in (2.15) before taking the limit,5Z
V
dd−1yPðx⃗ − y⃗Þuλðy⃗Þ ¼

1þ λ

2ð1 − λÞ vλðy⃗Þ: ð2:22Þ

From here vλðx⃗Þ and uλðx⃗Þ are eigenvectors of PX and XP,
respectively. We have in short notation

PXvλ ¼
1

4

�
1þ λ

1 − λ

�
2

vλ; ð2:23Þ

XPuλ ¼
1

4

�
1þ λ

1 − λ

�
2

uλ: ð2:24Þ

Since the product XP has eigenvalues in ð1=4;∞Þ [27], it
follows that λ > 0. However, λ and λ−1 give place to the
same eigenvectors, except for a global sign change on vλ.
This is due to the time reflection symmetry of the problem.
Hence, we can restrict to λ ∈ ð0; 1Þ. We write this intro-
ducing a new parameter s as

λ ¼ e−2πs s ∈ Rþ: ð2:25Þ

Owing to possible degeneracies parametrized by an index
k, from now we will name the solutions as uks and vks .
Moreover, as shown in Appendix A, the solutions are
uniquely determined by the asymptotic behavior at the
vicinity of the boundary ∂V. We expect d − 2 degeneracy

parameters, and on top of that, we expect some finite labels
if ∂V has more than one connected component.
Since XP and PX are not self-adjoint operators, we have

that the bases6 fuksg and fvksg are not orthonormal.
However, these bases can be chosen to be dual to each
other, since, due to (2.23) and (2.24),

hvk0s0 jXPjuksi ¼
cothðπsÞ2

4
hvk0s0 juksi ¼

cothðπs0Þ2
4

hvk0s0 juksi;
ð2:26Þ

and in consequence, the vectors uks and vk
0
s0 are orthogonal

for s ≠ s0. We then choose the normalization such that

hvk0s0 juksi ¼
Z
V
dd−1xvk

0
s0 ðx⃗Þ�uksðx⃗Þ ¼ δðs − s0Þδðk − k0Þ;

ð2:27Þ

where the δðk − k0Þ over the variables k, k0 may include a
discrete part.
Using the solutions to the “eigenvalues” problems (2.21)

and (2.22), we can easily decompose the operators X,C and
P as

Xðx⃗ − y⃗Þ ¼ 1

2

Z
dk

Z
Rþ

dsuksðx⃗Þ cothðπsÞuksðy⃗Þ�; ð2:28Þ

Pðx⃗ − y⃗Þ ¼ 1

2

Z
dk

Z
Rþ

dsvksðx⃗Þ cothðπsÞvksðy⃗Þ�; ð2:29Þ

Cðx⃗ − y⃗Þ ¼ 1

2

Z
dk

Z
Rþ

dsuksðx⃗Þ cothðπjsjÞvksðy⃗Þ�: ð2:30Þ

This is the desired result relating the spectral decom-
position of the kernels X and P in the (d − 1)-dimensional
region V with the solutions of the d-dimensional Klein-
Gordon equation through (2.19) and (2.20). Notice the
eigenvalues of the kernels are mapped to the factor in the
boundary condition on V [Eq. (2.8)].
Replacing these formulas into (2.5) and (2.6), we finally

obtain the following expressions for the modular
Hamiltonian kernels N and M

Nðx⃗; y⃗Þ ¼
Z

dk
Z
Rþ

dsuksðx⃗Þ2πsuksðy⃗Þ�; ð2:31Þ

Mðx⃗; y⃗Þ ¼
Z

dk
Z
Rþ

dsvksðx⃗Þ2πsvksðy⃗Þ�: ð2:32Þ

To summarize, in this section we have shown that
solving the Klein-Gordon equation in Euclidean space
with the multiplicative boundary condition (2.8) we can

5Notice the kernel P is singular for x → y and its distributional
definition is given by Eq. (2.18).

6XP has continuum spectrum and fuksg and fvksg are bases in
the generalized sense.
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construct the eigenfunctions uks and vks which diagonalize
the correlators (2.4) as kernels in the region V. These
eigenfunctions are related to boundary values of the Klein-
Gordon solution and its derivative on the cut. Using that,
we can easily obtain the modular Hamiltonian (2.2) in term
of these eigenfunctions as we expressed in (2.31)
and (2.32).

B. The Dirac field

In this section, we will apply to the Dirac field the same
idea used above for the case of a scalar field. This field
satisfies the Dirac equation and the equal time anticom-
mutation relations fψðx⃗Þ;ψ†ðy⃗Þg ¼ δðd−1Þðx⃗ − y⃗Þ1n×n
where n ¼ 2⌊

d
2
⌋. Now, the modular Hamiltonian can be

written as

H ¼
Z
V
dd−1xdd−1yψ†ðx⃗ÞHðx⃗; y⃗Þψðy⃗Þ; ð2:33Þ

where the Hamiltonian kernel Hðx⃗; y⃗Þ can be expressed in
terms of the correlator matrix kernel

Cðx⃗ − y⃗Þ ¼ h0jψðx⃗Þψ†ðy⃗Þj0i ð2:34Þ

as [28]

H ¼ − logðC−1 − 1Þ: ð2:35Þ

We now consider the Dirac equation in Euclidean space.7

The spinor field SðxÞ satisfies

ðγμ∂μ þmÞSðxÞ ¼ 0 ð2:36Þ

everywhere except at the region V, where we also impose
the same multiplicative boundary conditions with factor λ
used for the scalar field (2.8). The solution must vanish at
infinity and, in addition, l1=2SðxÞ, where l is the distance
from x to the boundary of the region ∂V, has to remain
bounded as x → ∂V [27].
We also take the Euclidean Green function GD for the

Dirac field in the full space without the cut,

GDðx − yÞ ¼ ð−γμ∂x
μ þmÞGSðx − yÞ

¼ 1

ð2πÞd
Z
Rd

−iγμpμ þm

p2 þm2
eip·ðx−yÞ: ð2:37Þ

The Dirac Green function (2.37) satisfies the relation
GDðξÞ ¼ G†

DðξÞ and the inhomogeneous equation

ðγμ∂x
μ þmÞGDðx − yÞ ¼ δðdÞðx − yÞ: ð2:38Þ

Combining (2.36) and (2.38) we have the current

JxμðyÞ ¼ GDðx − yÞγμSðyÞ; ð2:39Þ

which is conserved everywhere in M ¼ Rd − V except at
the points y ¼ x, where

∂μJxμðyÞ ¼ −δðdÞðx − yÞSðyÞ: ð2:40Þ

Integrating this equation on M we obtain from the Stokes
theorem

−SðxÞ ¼
Z
M

ddy∂μJxμðyÞ

¼ −
Z
V
dd−1yGDðx − ð0; y⃗ÞÞγ0Sþðy⃗Þ

þ
Z
V
dd−1yGDðx − ð0; y⃗ÞÞγ0S−ðy⃗Þ; ð2:41Þ

where we drop the boundary contribution at infinity since
the Green function (2.10) vanishes exponentially at infinity.
Using the boundary condition (2.8) we simplify (2.41) into

SðxÞ ¼ ð1 − λ−1Þ
Z
V
dd−1yGDðx − ð0; y⃗ÞÞγ0Sþðy⃗Þ; ð2:42Þ

which gives us the function SðxÞ on the Euclidean plane
from its values on V.
Taking the limit x → ð0þ; x⃗Þ ∈ V with y⃗ ∈ V, and using

lim
x→Vþ;y∈V

GDðx − yÞγ0 ¼ Cðx⃗ − y⃗Þ ð2:43Þ

we getZ
V
dd−1yCðx⃗ − y⃗ÞSþðy⃗Þ ¼ λ

λ − 1
Sþðx⃗Þ: ð2:44Þ

That is, the boundary value of the spinor SðxÞ plays the
role of eigenvector of the correlator kernel on V. Since
eigenvalues of Cðx⃗ − y⃗Þ are restricted to (0,1) (see [27]) the
range of possible λ is λ ∈ ð−∞; 0Þ. Then, the allowed range
for the boundary condition factor is the negative numbers,
in contrast to the scalar case for which λ > 0. We can write
equivalently

λ ¼ −e−2πs s ∈ R: ð2:45Þ

Notice s and −s now give two independent eigenvectors of
the kernel Cðx − yÞ. They correspond to time-reflected
solutions of the Euclidean problem,

S−sðx0; x⃗Þ ¼ MS�sð−x0; x⃗Þ; ð2:46Þ

7Here we are using the Euclidean version of the gamma
matrices which satisfies fγμ; γνg ¼ 2δμν1n×n and are related to
the Minkowski gamma matrices as γ0E ¼ γ0M and γkE ¼ −iγkM for
k ¼ 1;…; d − 1 where we use the convention γEμ ¼ γμE.
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where M is the matrix given time inversion symmetry,
determined by the relations Mγ�0 ¼ −γ0M, Mγ�i ¼ γiM.
We name the eigenvectors as

uksðxÞ ≔ Sþk
s ðxÞ; x ∈ V; ð2:47Þ

where k identifies the different solutions with the same s.
Since, in this case, the kernel C is a self-adjoint operator8

we can choose the eigenfunctions fuksg to be orthonormal

huks juk0s0 i ¼
Z
V
dd−1xuk†s ðx⃗Þuk0s0 ðx⃗Þ ¼ δðs − s0Þδðk − k0Þ:

ð2:48Þ

The correlator kernel writes

Cðx⃗ − y⃗Þ ¼
Z

dk
Z
R
dsuksðx⃗Þ

1

1þ e2πs
uk†s ðy⃗Þ: ð2:49Þ

Finally, using this formula and (2.35) we obtain the
following expression for the Hamiltonian kernel H

Hðx⃗; y⃗Þ ¼ −
Z

dk
Z
R
dsuksðx⃗Þ2πsuk†s ðy⃗Þ: ð2:50Þ

III. EIKONAL APPROXIMATION AND LOCAL
TEMPERATURES

In general it is a difficult problem to find solutions of the
wave equation with the specified boundary conditions on
V. However, here we are interested in the eigenvectors of
the modular Hamiltonian kernels for the sake of under-
standing the local terms around a point, that is, how these
kernels behave in the limit x ∼ y. This allows us to simplify
the problem in the following terms. First we can see the
local terms are naturally related to the high frequency limit
of the solutions. This in turn implies we have to look at the
spectrum for the limit of large multiplicative factor,
jsj ≫ 1. A simple exact example can illustrate this fact.
Consider the case of a massless Dirac field in d ¼ 2 for n
intervals. The solutions are of the form [29]

uksðx1Þ ¼ gkðx1Þe−iswðx1Þ; ð3:1Þ

where gkðx1Þ is some smooth, nonoscillatory prefactor, and

wðx1Þ ¼ log

�
−
Yn
i¼1

x1 − li
x1 − ri

�
: ð3:2Þ

Here ðli; riÞ, i ¼ 1;…; n are the different nonintersecting
intervals. It is evident that, when these solutions are
inserted into (2.50), and we look at the x ∼ y limit of

the kernel, we will need only the large s limit in the Fourier
integral. The result will depend essentially on the function
wðxÞ, since the prefactors are fixed to give the correct
normalization for the local “plane wave” type contribution.
We get that the local temperatures are given exclusively in
terms of the phase factor by [29]

βðx1Þ ¼ 2πw0ðx1Þ−1 ¼ 2π

�Xn
i¼1

�
1

x1 − li
þ 1

ri − x1

��−1
:

ð3:3Þ

As argued in [23], the limit of large s can be understood
as a limit of large angular momentum for the angular
variable describing the transition from one side of the cut to
the other. Hence, this limit is one of large gradients for the
solutions S, and we can use an eikonal approximation. In
this approximation the mass of the field becomes irrelevant
since it is much smaller than the typical kinetic energies
involved [23].
This eikonal limit will allows us to extract a universal

geometric prescription for the local temperatures. Notice
that even if we are making an approximation for the
solutions, this approximation becomes exact for the large
s limit, and the result for the local temperatures will then be
exact, since these are defined for the limit of high-energy/
small size excitations.

A. Scalar field

Therefore we want to solve the Euclidean Klein-Gordon
equation (2.7) for large s. In the spirit of the eikonal
approximation we write

SðxÞ ¼ gðxÞeαðxÞ; ð3:4Þ

where α ∼OðsÞ but gðxÞ is a normalization factor of
polynomial order in s. Applying the equation of motion
(2.7) to this parametrization of the solution we get

0 ¼ ð−∇2 þm2ÞSðxÞ ¼ −eα½ð∇αÞ2gþ∇2αg

þ 2ð∇αÞð∇gÞ þ ð∇gÞ2 −m2g�: ð3:5Þ

Keeping only the leading terms for large s we get

ð∇αÞ2 ¼ 0: ð3:6Þ

Since the function α could be (and must be) complex
valued, we have nontrivial solutions for this last equation.
Writing

α ¼ aþ ib ð3:7Þ

with a and b real valued functions, we can rewrite
(3.6) as

8By the Hermiticity condition of the Wightman distributions
we have that Cijðx⃗ − y⃗Þ ¼ Cjiðy⃗ − x⃗Þ�.
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ð∇aÞ2 ¼ ð∇bÞ2; ð3:8Þ

∇a ·∇b ¼ 0; ð3:9Þ

with boundary conditions [see (2.8)]

að0þ; x⃗Þ ¼ að0−; x⃗Þ − 2πs; ∀ x⃗ ∈ V; ð3:10Þ

bð0þ; x⃗Þ ¼ bð0−; x⃗Þ: ð3:11Þ

We see a and b are defined up to an additive constant.
Given a solution α ¼ aþ ib of these equations the com-
plex conjugate α� ¼ a − ib also gives a solution for the
same value of s. Likewise, changing aðx0; x⃗Þ →
−að−x0; x⃗Þ and bðx0; x⃗Þ → bð−x0; x⃗Þ also gives a solution
of the same problem. This leaves the asymptotic behavior
of α near ∂V unchanged. Then they represent approximate
solutions for S with the same asymptotic behavior and by
uniqueness [see the discussion around Eq. (A9) in
Appendix A] we expect they represent the same solution
of the eikonal problem, up to an additive constant,

−að−x0; x⃗Þ ¼ aðx0; x⃗Þ þ const;

bð−x0; x⃗Þ ¼ bðx0; x⃗Þ þ const: ð3:12Þ

This implies in particular that the gradient∇a is orthogonal
to V and ∇b is parallel to V. Without loss of generality we
can fix að0þ; x⃗Þ ¼ 0, að0−; x⃗Þ ¼ 2πs, for x⃗ ∈ V.
Factoring out a linear s dependence, this system can be

written in terms of two vector fields AðxÞ ¼ s−1∇aðxÞ and
BðxÞ ¼ s−1∇bðxÞ in Rd, that are continuous outside ∂V,
and obey

jAj ¼ jBj; ð3:13Þ

A · B ¼ 0; ð3:14Þ

∂iAj − ∂jAi ¼ 2πðξ1i ξ2j − ξ2i ξ
1
jÞδd−2∂V ; ð3:15Þ

∂iBj − ∂jBi ¼ 0; ð3:16Þ

where ξ1 ¼ ð1; 0;…; 0Þ, and ξ2 is a unit outward-pointing
vector normal to ∂V and ξ1, and δd−2∂V is the delta function
on ∂V.9 Equation (3.15) just means that the circulation of A
around ∂V in the positive time direction is 2π. The previous
discussion (3.12) also implies that, writing T for the time
inversion matrix in Rd,

AðxÞ ¼ −TAðTxÞ; ð3:17Þ

BðxÞ ¼ TBðTxÞ: ð3:18Þ

These are the eikonal equations. Geometrically, a and b
are two orthogonal coordinates in Rd, and a is an angular
coordinate that goes from 0 to 2πs between the two sides of
the cut. In addition, the gradients of the two coordinates
have equal modulus.

1. Eigenfunctions and normalization

Suppose that we have solutions ðAk; BkÞ of this system
parametrized with the multi-index k ¼ ðk1;…; kd−2Þ, in
some domain k ∈ K. We expect in d dimensions, a
degeneracy in the eigenspace of solutions which could
be labeled with d − 2 parameters ki. In general, according
to the discussion in Appendix A, we expect these param-
eters to label momentum variables associated with the
description of ∂V; they will be continuous for unbounded
boundaries and discrete for bounded ones, and additional
discrete labels may occur for multiple component regions.
For simplicity of notation, in what follows we will work
with continuum variables ki.
In terms of these functions, we can write

SkðxÞ ¼ gkðxÞes
R

x

x�
AkðyÞ·dyeis

R
x

x�
BkðyÞ·dy; ð3:19Þ

where x� is a fixed arbitrary point and the integrals on the
exponent are line integrals of any path which connects x�
to x.10 For convenience we set x� ∈ V. From this, and
considering that A⃗ ¼ 0 for x ∈ V, we get the eigenfunctions
of the kernels on V as

uksðx⃗Þ ¼ gkðx⃗Þeis
R

x⃗

x�
B⃗kðy⃗ Þ·dy⃗; ð3:20Þ

vksðx⃗Þ ¼ gkðx⃗ÞsAk
0ðx⃗Þeis

R
x⃗

x�
B⃗kðy⃗ Þ·dy⃗; ð3:21Þ

where we have written Ak
0ðx⃗Þ for the time component (the

only nonzero component) of the vector AkðxÞ for x ∈ V.
The scalar product of the eigenfunctions

huk0s0 jvksi ¼
Z
V
dd−1xsgkðx⃗Þg�k0 ðx⃗ÞAk

0ðx⃗Þ

× e
−is0

R
x⃗

x�
B⃗k0 ðy⃗ Þ·dy⃗þis

R
x⃗

x�
B⃗kðy⃗ Þ·dy⃗ ð3:22Þ

should be normalized to give

δðs − s0Þδðd−2Þðk − k0Þ ¼ δðs − s0Þδðk1 − k01Þ…
δðkd−2 − k0d−2Þ: ð3:23Þ

This would be the case for the exact solutions; in the
eikonal approximation, due to the large exponents involved

9This is defined such that
R
ddxfðxÞδd−2∂V ðxÞ ¼ R

∂V dy∥
ffiffiffiffiffiffiffiffiffiffiffi
gðy∥Þ

p
fðy∥Þ, for y∥ coordinates on ∂V.

10The integral is independent of the chosen path since A and B
are gradients outside ∂V.
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and in order to get the right coefficient of delta function, we
can approximate the exponential factor with its Taylor
series on Δki ¼ k0i − ki,

huk0s0 jvksi ¼
Z
V
dd−1xgkðx⃗Þg�kðx⃗ÞsAk

0ðx⃗Þ

× e
−iΔsð

R
x⃗

x�
B⃗kðy⃗ Þ·dy⃗ Þe−isΔki∂ki ð

R
x⃗

x�
B⃗kðy⃗ Þ·dy⃗ Þ: ð3:24Þ

We define d − 1 functions

σiðx⃗Þ ¼ ∂ki

�Z
x⃗

x�
B⃗kðy⃗Þ · dy⃗

�
i ∈ f1;…; d − 2g;

σd−1ðx⃗Þ ¼
Z

x⃗

x�
B⃗kðy⃗Þ · dy⃗; ð3:25Þ

which are Oð1Þ in the eikonal parameter s. We assume we
can invert the above functions in the region W ⊆ V where
the eikonal functions are nonvanishing,

x⃗ ¼ ðx1;…; xd−1Þ ∈ W ↔ ðσ1;…; σd−1Þ ∈ Σ; ð3:26Þ

where Σ ∈ Rd−1 is the domain where these new variables
are defined (thus, the range of the functions σi). After
making the change of variables (3.26), the formula (3.24)
becomes

huk0s0 jvksi ¼
Z
Σ
dd−1σgkg�ksA

k
0J

−1e−iΔsσd−1e−isσiΔki ; ð3:27Þ

where J is the Jacobian determinant of the change of
variables matrix (3.26)

J ¼
���� det

�∂ðσ1;…; σd−1Þ
∂ðx1;…; xd−1Þ

�����; ð3:28Þ

and we have the relations

∂xjσi ¼ ∂kiBj; i ¼ 1;…; d − 2; ∂xjσd−1 ¼ Bj:

ð3:29Þ

The fact that the functions uks and vks are orthogonal
shows that the prefactors gk satisfy

jgkj2 ¼
sd−3J

ð2πÞd−1Ak
0

; ð3:30Þ

where the overall normalization has been chosen such that
(2.48) holds. Notice Ak

0 should be always positive on V.
Then, except for a point dependent Oð1Þ phase which is

not relevant for the applications we have in mind, in the
eikonal approximation, the appropriately normalized func-
tions uks and vks can be chosen as

uksðx⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd−3Jðx⃗Þ

ð2πÞd−1Ak
0ðx⃗Þ

s
e
is
R

x⃗

x�
B⃗kðyÞ·dy; ð3:31Þ

vksðx⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd−1Jðx⃗ÞAk

0ðx⃗Þ
ð2πÞd−1

s
e
is
R

x⃗

x�
B⃗kðyÞ·dy: ð3:32Þ

2. Local terms in the modular Hamiltonian

Now, using the formulas (2.31) and (2.32) we calculate
the kernels N and M of the modular Hamiltonian in the
local limit. We write the two variables of the kernels as
x⃗ 0; y⃗ 0, where we look at the limit x⃗ 0 ∼ y⃗0 and both these
variables are in a small neighborhood of a point x⃗ that we
take as fixed. For N, we have

Nðx⃗0; y⃗0Þ≃
Z

∞

0

ds
Z
K
dd−2kπs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd−3Jðx⃗0Þ

ð2πÞd−1Ak
0ðx⃗0Þ

s

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd−3Jðy⃗0Þ

ð2πÞd−1Ak
0ðy⃗0Þ

s
e
is
R

x⃗0
x�

B⃗kðy⃗ Þ·dy⃗−is
R

y⃗0
x�

B⃗kðy⃗ Þ·dy⃗;

≃
Z

ds
Z
K
dd−2kπ

sd−2Jðx⃗Þ
ð2πÞd−1Ak

0ðx⃗Þ
eisB⃗kðx⃗ Þ·Δx⃗0 ;

ð3:33Þ

where in the second line we set Δx⃗0 ¼ x⃗0 − y⃗0, with jΔx⃗0j
small, and neglected factors of Δx⃗0 everywhere except in
the exponent, since we are looking for the leading
local term.
Next, keeping in mind we are looking at a neighborhood

of a point x, we make a change of variables (at fixed x⃗)

ðs; k1;…; kd−2Þ ↔ p⃗ ¼ sðB1;…; Bd−1Þ; ð3:34Þ

whose Jacobian determinant is j ∂ðsBÞ∂ðs;kÞ jx⃗ ≡ sd−2Jðx⃗Þ, i.e.,
because of the relations (3.29), it is proportional to the
expression (3.28). Then, for the local term of the kernel N
we have

Nlocðx⃗0; y⃗0Þ ¼
Z

dd−1p
ð2πÞd−1

π

A0ðp̂; x⃗Þ
eip⃗·ðx⃗0−y⃗0Þ: ð3:35Þ

Note the momentum variable of the local part of the kernel
is played essentially by the solution B at the point
p⃗ ¼ sB⃗ðx⃗Þ. The time component Ak

0ðx⃗Þ will depend on
the particular solution of the eikonal equation that gives the
direction p̂ ¼ B̂ðx⃗Þ. This dependence arises because the k
dependence has been traded off to a B⃗ðx⃗Þ dependence in the
change of variables. This is why we write

A0ðp̂; x⃗Þ ≔ Akðp̂;x⃗ Þ
0 ðx⃗Þ: ð3:36Þ

Notice that A0 ¼ jAj ¼ jB⃗j on the points of V [recall also
(3.14)]. Hence π=A0ðp̂; x⃗Þ can also be written as πs=jp⃗j,
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where now s has to be understood as a function of p̂
and x⃗.
Following the same steps for the kernel M we obtain

Mlocðx⃗0; y⃗0Þ ¼
Z

dd−1p
ð2πÞd−1

πp⃗2

A0ðp̂; x⃗Þ
eip⃗·ðx⃗0−y⃗0Þ: ð3:37Þ

Expressions (3.35) and (3.37) have exactly the expected
form for a scalar [23]. In coordinate space the expressions
are less transparent. Nloc is a homogeneous distribution of
degree d − 1 which can include a component of the delta
function δd−1ðx⃗0 − y⃗0Þ but more generally contains angle-
dependent terms of the form [23]

fð x⃗0−y⃗0
jx⃗0−y⃗0jÞ

jx⃗0 − y⃗0jd−1 : ð3:38Þ

Mloc is a homogeneous distribution of degree dþ 1 and
may contain second derivatives of the delta function as in
the local energy density operator, but more generally it also
contains angle-dependent terms, with the same scaling
dimensions dþ 1.
To find the local temperatures in terms of A0ðp̂; x⃗Þ we

compute the operator form of the local Hamiltonian by
inserting these kernels into (2.2). Of course, we only know
the leading local structure of the kernels around a point x⃗,
and integrating it with the field operators give us an
operator expression that is only valid as a leading term
for high-energy localized excitations. In accordance with
this, we are using the massless field expression

ϕðxÞ ¼
Z

dd−1p

ð2πÞd−12 ffiffiffiffiffiffiffiffiffi
2jp⃗jp ðap⃗e−ipx þ a†p⃗e

ipxÞ: ð3:39Þ

Computing the modular Hamiltonian (2.2) withM andN as
they were given by (3.35) and (3.37) with x0, y0 in all space,
we get

Hloc ¼
Z

dd−1p

�
π

A0ðp̂; x⃗Þ
þ π

A0ð−p̂; x⃗Þ
�
jp⃗ja†p⃗ap⃗: ð3:40Þ

A0ðp̂; x⃗Þ is in fact A0ðB̂; x⃗Þ, that is, the value of A0 ¼ jBj on
a point x⃗ for a solution of the eikonal equations with B at
the point x⃗ pointing in the direction of p̂. We recall that the
eikonal equations having a solution ðA;BÞ will also admit
ðA;−BÞ as a solution. This just corresponds to the complex
conjugate solution of the wave equations. Hence,
A0ðp̂; x⃗Þ ¼ A0ð−p̂; x⃗Þ and we get11

Hloc ¼
Z

dd−1p
2π

A0ðp̂; x⃗Þ
jp⃗ja†p⃗ap⃗: ð3:41Þ

This shows the modular Hamiltonian acts as a thermal state
with direction-dependent temperature for local excitations.
The inverse temperatures are given by

βðp̂; x⃗Þ ¼ 2π

A0ðp̂; x⃗Þ
: ð3:42Þ

B. Dirac field

In this subsection, we will apply for the Dirac field the
same procedure we used for the scalar field in the previous
one. In general terms, the eikonal approximation leads to
the same geometric problem in the fermion case; hence, we
will frequently refer to the results above. However, we will
emphasize the differences between the two cases due to the
spinor nature of the solutions of (2.36).
We start parametrizing the solutions SðxÞ as in (3.4), but

in this case gðxÞ ∈ Cn is a spinor valued function
(n ¼ 2⌊

d
2
⌋). SðxÞ satisfies the Euclidean Dirac equation,

but each spinor component also satisfies the Euclidean
Klein-Gordon equation as (3.5). Then, clearly, we have the
same eikonal equations (3.9) for the function α ¼ aþ ib.
The first difference between the bosonic and fermionic case
is that the boundary conditions (3.11) must be replaced by

að0þ; x⃗Þ ¼ að0−; x⃗Þ − 2πs ∀ x⃗ ∈ V; ð3:43Þ

bð0þ; x⃗Þ ¼ bð0−; x⃗Þ − π: ð3:44Þ

However, since we are interested in the limit of large s
(eikonal limit), the factor ð−1Þ in the spinors that leads to
the jump of π in b in the second expression is a subleading
effect as compared to the jump of order s in a, and we can
drop the factor π on the b function, recovering the same
eikonal equations we obtained for the scalar field.

1. Eigenfunctions and normalization

As we claim above for the scalar, the solutions of the
eikonal problem for the Dirac field analogous to (3.19) are

uksðx⃗Þ ¼ Sksð0þ; x⃗Þ ¼ gkðx⃗Þeis
R

x⃗

x�
B⃗kðy⃗ Þ·dy⃗: ð3:45Þ

Normalizing these spinors as we did in the previous
subsection for the scalar functions, we arrive at

huks juk0s0 i ¼
Z
Σ
dd−1σg†kgkJ

−1e−iΔsσd−1e−isσiΔki

¼ δðs − s0Þδðk − k0Þ; ð3:46Þ

which implies that g†kðx⃗Þgkðx⃗Þ ¼ jsjd−2Jðx⃗ Þ
ð2πÞd−1 .

This relation only determines the norm of the spinor g,
and we need another formula to completely determine it.

11Terms that mix creation operators on opposite directions, that
were estimated to be possible on general ground in [23], are in
fact absent.
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For that, we use the fact that the solution SðxÞ satisfies the
Dirac equation,

0 ¼ ðγμ∂μ þmÞSðxÞ
¼ eα½ðγμ∂μgÞ þ ðγμ∂μαÞgþmg� ⇒ ðγμ∂μαÞg
¼ 0: ð3:47Þ

The last implication is valid in the eikonal limit in which the
derivatives of the exponent α are much greater than the ones
of g or the field mass. Equivalently,

ðγ0A0 þ iγ⃗ · B⃗Þg ¼ 0; ð3:48Þ
where γ⃗ ¼ ðγ1;…; γd−1Þ. Recalling the relation between
the Euclidean gamma matrices fγμgμ¼0;…;d−1 and the
Minkowskian gamma matrices fγμMgμ¼0;…;d−1, we can
rewrite the last expression as

ðγ0MA0 þ γ⃗M · B⃗Þg ¼ 0: ð3:49Þ

A0 plays the role of the energy and B⃗ plays the one of the
momentum in plane wave solutions. Since jA0j ¼ jB⃗j, the
spinor g satisfies the same expression that the spinors of
the plane wave solutions of the Dirac massless equation.
Here we notice a difference with the scalar case. In the case
of the scalar we take s > 0, and in consequence A0 > 0.
However, for the Dirac field s and −s are independent time-
reflected solutions, and each will be accompanied with A0

of the same sign as s,12 which corresponds to positive and
negative energy solutions of the Dirac equation (3.49).
A basis of spinors fwjðp⃗Þgj¼1;…;n

2
⊂ Cn which satisfy

the Dirac equation with positive energy

ðγ0Mjp⃗j − γ⃗M · p⃗Þwjðp⃗Þ ¼ 0; ð3:50Þ

can be chosen such that wj†ðp⃗Þwj0 ðp⃗Þ ¼ 2jp⃗jδj;j0 . Then the
desired solutions for the spinor g are

gjkðx⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jsjd−2Jðx⃗Þ
ð2πÞd−12jAk

0ðx⃗Þj

s
wjð−sgnðsÞB⃗ðx⃗ÞÞ; ð3:51Þ

where we have used the fact that sgnðsÞ ¼ sgnðA0Þ.
Therefore, on top of the k degeneracy, there is an n=2
spinor degeneracy for each s, which can have two signs.

2. Local terms in the modular Hamiltonian

Now, we are ready to explicitly calculate the
Hamiltonian kernel Hðx⃗0; y⃗0Þ replacing (3.45) and (3.51)
in (2.50). Doing the same near point approximation
(x⃗0 ¼ y⃗0 þ Δx⃗0) and the same change of variables k ↔
B⃗x⃗ as we did for the scalar field, we get

Hlocðx⃗0; y⃗0Þ≃
Z
R
ds

Z
K
dd−2kð−2πsÞ jsjd−2Jðx⃗Þ

ð2πÞd−12jAk
0ðx⃗Þj

×
Xn

2

j¼1

wjð−sgnðsÞB⃗ðx⃗ÞÞwj†

× ð−sgnðsÞB⃗ðx⃗ÞÞeisB⃗kðx⃗ Þ·Δx⃗0 : ð3:52Þ

Using the identity

Xn
2

j¼1

wjðp⃗Þwj†ðp⃗Þ ¼ jp⃗j þ γ0M γ⃗M · p⃗ ð3:53Þ

we can write Eq. (3.52) as

Hlocðx⃗0; y⃗0Þ≃
Z
R
ds

Z
K
dd−2kð−2πsÞ

×
jsjd−2Jðx⃗Þ

ð2πÞd−12jAk
0ðx⃗Þj

ðjAk
0ðx⃗Þj

− sgnðsÞγ0M γ⃗M · B⃗kðx⃗ÞÞeisB⃗kðx⃗ Þ·Δx⃗0 : ð3:54Þ

Next we apply the same change of integration variables
as in (3.34) where we have to take s positive, s → jsj,
keeping in mind we have two solutions with opposite signs
of s for the same p⃗

Hlocðx⃗0; y⃗0Þ≃
X
sgnðsÞ

Z
dd−1p
ð2πÞd−1

−2πsgnðsÞjsðp⃗Þj
2jA0ðp̂; x⃗Þj

×

�
jA0ðp̂; x⃗Þj −

sgnðsÞ
jsj γ0M γ⃗M · p⃗x⃗

�
eip⃗x⃗·Δx⃗0

¼
Z

dd−1p
ð2πÞd−1

2π

jA0ðp̂; x⃗Þj
ðγ0M γ⃗M · p⃗Þeip⃗·Δx⃗0 :

ð3:55Þ

Hence, the sum over the two values of s amounts to
summing over positive and negative energy solutions of the
Dirac Hamiltonian, which we recognize within the brackets
in the last expression.
The operator expression for the local modular

Hamiltonian follows by smearing the kernel Hðx⃗0; y⃗0Þ with
the field operators as in (2.33). Using the explicit expres-
sion of the fields in terms of the creation fa†jðp⃗Þ; b†jðp⃗Þg
and annihilation operators fajðp⃗Þ; bjðp⃗Þg in Fock space

ψðx⃗Þ ¼
Z
Rd−1

dd−1pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞd−12jp⃗j

p
×

�Xn
2

j¼1

ujðp⃗Þajðp⃗Þeip⃗·x⃗ þ vjðp⃗Þb†jðp⃗Þe−ip⃗·x⃗
�
:

ð3:56Þ12If A⃗, B⃗ is a solution with s, −A⃗, B⃗ is a solution with −s.
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This amounts to replacing the Dirac Hamiltonian within the
brackets in (3.55) by its second-quantized version,

Hloc ¼
Z

dd−1p
2πjp⃗j

jA0ðp̂; xÞj
Xn

2

j¼1

ða†jðp⃗Þajðp⃗Þ þ b†jðp⃗Þbjðp⃗ÞÞ:

ð3:57Þ

Here we see exactly the same result as for a scalar. The local
temperature is direction dependent and given by the same
formula (3.42).13

IV. SUMMARY: UNIVERSALITY OF LOCAL
TEMPERATURES

Summarizing the results, we have that for an arbitrary
region V the local inverse temperatures can be obtained by
solving the purely geometric problem given by the eikonal
equations (3.13)–(3.16) and (3.17)–(3.18), for two vector
fields A and B on Euclidean space. These equations imply
the two vector fields are orthogonal, have equal modulus,
and both of them are gradients except for A on ∂V, where it
has a magnetic flux-type source along the boundary. This
singularity means the circulation of A around ∂V in the
positive time direction when crossing V is 2π. Further, A is
orthogonal to V and B is parallel to V. The same eikonal
solutions in Euclidean space also give the local temper-
atures for the complementary region V̄.
On x0 ¼ 0, x⃗ ∈ V, the vector AðxÞ is purely timelike and

future directed, A⃗ðxÞ ¼ 0, A0ðxÞ > 0, and the field BðxÞ is
spacelike, B0ðxÞ ¼ 0. Given a point x⃗ ∈ V at x0 ¼ 0, and a
particular direction p̂, we have to find the eikonal solution
with Bðx⃗Þ pointing in this same direction, B̂ðx⃗Þ ¼ p̂, and
the value of A0ðx⃗Þ ¼ jAðx⃗Þj ¼ jBðx⃗Þj gives us the temper-
ature as

TðB̂ðx⃗Þ; x⃗Þ ¼ A0ðB̂ðx⃗Þ; x⃗Þ
2π

; ð4:1Þ

or the inverse temperature

βðB̂ðx⃗Þ; x⃗Þ ¼ 2π

A0ðB̂ðx⃗Þ; x⃗Þ
: ð4:2Þ

This result is the same for free scalars and fermions,
independently of the mass, pointing to some universality of
the local temperatures across different theories. As by its
very definition the local temperatures are defined for a
regime of large energies we expect the same result would
apply to supernormalizable theories as well.

In general the local temperatures are direction depen-
dent; we will see an explicit example in Sec. VI. A general
result is that the temperatures in a direction and the opposite
one are the same,

βðB̂ðx⃗Þ; x⃗Þ ¼ βð−B̂ðx⃗Þ; x⃗Þ: ð4:3Þ

This is a technical consequence of the fact that if ðA;BÞ is a
solution, ðA;−BÞ is also a solution and can be traced to
time inversion invariance of both the vacuum state and the
region V. These imply that the relative entropy between the
excitation with momentum p⃗ and the vacuum do not
change if we invert the momentum. This will not hold
for points in the causal development of V outside x0 ¼ 0.
Unfortunately, we do not know of a general method to

solve these equations. In the next sections we show some
particular analytic solutions. However, these differential
and algebraic equations are in principle solvable numeri-
cally. In contrast to ordinary eikonal equations for
Schrödinger or Maxwell equations, which give place to
particlelike trajectories with local action, and hence boil
down to ordinary differential equations, in the present case
the eikonal equations are much more nonlocal. The
solutions cannot be found locally without taking into
account boundary conditions imposed in ∂V far away.
These same technical difficulties have impeded us from

proving some natural expectations. For example, for any
region we expect βðp̂; x⃗Þ > 0 to exist and be different from
zero for any direction p̂ and point x⃗ ∈ V outside ∂V. This
points to the existence of sufficiently many solutions of the
eikonal equation such that we can fix the direction of the
field B at a point p̂ ¼ B̂ðx⃗Þ. Further, we expect this solution
with B̂ðx⃗Þ fixed to be unique, but this is less obviously
necessary. If there would be more than one solution we
would have to sum over the different 2π=A0ðB̂ðx⃗Þ; x⃗Þ in the
modular Hamiltonian to obtain the inverse temperature β.
Another necessity is that βðB̂ðx⃗Þ; x⃗Þ for fixed x⃗ and B̂ðx⃗Þ,
as a function of the region, has to be increasing under
inclusion of regions [23]. This is a consequence of
monotonicity of relative entropy.

A. Conformal transformations

The eikonal equations come from high-energy solutions
and are independent of mass. Then, they must be covariant
under conformal transformations. This allows us to find the
solutions in a conformally transformed space from sol-
utions in the original space. To see the rules of trans-
formations it is convenient to note that a solution of the
massless Klein-Gordon equation will transform with a
prefactor, but this factor will not change the term linear
in s in the exponent. Therefore the exponent α ¼ aþ ib
only undergoes a coordinate transformation.
To see this more explicitly, let ~x ¼ ~xðxÞ be a point

transformation between manifolds M and ~M, with

13In order to obtain the local temperatures it is only necessary
to consider the eikonal solution with s > 0, A0 > 0, as in the
scalar case.
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~gμν ¼ Ω2g0μν; g0μν ¼
∂xα
∂ ~xμ

∂xβ
∂ ~xν gαβ: ð4:4Þ

A and B will transform as vectors,

~Aμ ¼
∂xα
∂ ~xμ Aα; ð4:5Þ

~Bμ ¼
∂xα
∂ ~xμ Bα: ð4:6Þ

It is immediate to check using (4.4) that the relations
~A · ~B ¼ 0, j ~Aj ¼ j ~Bj hold in the new space. They are also
gradients on the new coordinates and the circulation of ~A
around ∂ ~V does not change because a is preserved on the
two sides of the cut.

V. SIMPLE SOLUTIONS

In this section we show some examples of solutions of the
eikonal equations that are particularly simple to obtain. In
both of these examples, however, the local temperatures are
direction independent and given by a contribution propor-
tional to the stress tensor in the modular Hamiltonian.

A. Two dimensions

In d ¼ 2 we have outside the boundary of the region the
equations

ð∂1aÞ2 þ ð∂2aÞ2 ¼ ð∂1bÞ2 þ ð∂2bÞ2; ð5:1Þ

∂1a∂1bþ ∂2a∂2b ¼ 0: ð5:2Þ

These are equivalent to

∂1a ¼ �∂2b; ð5:3Þ

∂2a ¼∓ ∂1b: ð5:4Þ

These are exactly the Cauchy-Riemann equations for the
function α ¼ aþ ib, that implies it is either analytic or
antianalytic.14 Analyticity is a great help which allows us to
solve the problem in full generality. For a region consisting
of n disjoint intervals V ¼ ∪n

i¼1ðli; riÞ, we need to impose
the right boundary conditions (3.10) and (3.11) on the cut
V, and to impose α to be analytic or antianalytic outside V.
Writing z ¼ x1 þ ix0, this is solved by the functions
[already introduced in (3.2)]

α1ðzÞ ¼ is log

�Yn
i¼1

z − li
z − ri

�
; ð5:5Þ

α2ðzÞ ¼ −is log
�Yn

i¼1

z̄ − li
z̄ − ri

�
: ð5:6Þ

Multiplying these functions by an analytic (or antianalytic)
function we obtain another solution of the eikonal
equations. However, these functions would contain other
singularities or be unbounded at infinity.
Hence, α1, α2, which are the conjugate of one another,

form the full space of solutions for α. An example for a
single interval is shown in Fig. 1. On V the vector B has a
nonzero component

B1ðx1Þ ¼ ∂1ℑðα=sÞ ¼ �
X
i

�
1

x1 − li
þ 1

ri − x1

�
; ð5:7Þ

where the plus (minus) sign corresponds to the solution α1
(α2). Then, in order to compute the local temperature at a
point x1 ∈ V we have to choose one of the two possible
directions for B1. This amounts to choose either of the
solutions. In the present case both directions give place to
the same temperatures since B1 differs in sign but not in
modulus. We have

βðxÞ ¼ 2π

A0

¼ 2π

jB1j
¼ 2π

�X
i

�
1

x1 − li
þ 1

ri − x1

��
−1
:

ð5:8Þ

This is the result quoted in (3.3). It was first obtained in [29]
through an exact calculation of the modular Hamiltonian
for massless free Dirac fields in d ¼ 2, but regarding the

0.0 0.5 1.01.0 0.5
1.0
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1.0
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y

FIG. 1. The lines of constant a and b of the solution (5.5) of the
eikonal problem corresponding to an interval ð−1=2; 1=2Þ in
d ¼ 2. The lines form an orthogonal coordinate system. Curves
of constant a are circles passing through the end points of the
interval, while curves of constant b are circles around these end
points.

14In geometric terms, every analytic function gives place to an
orthogonal coordinate system where the gradients of the coor-
dinates have equal modulus, jAj ¼ jBj. Note however that it is
possible that jAj ¼ jBj ¼ 0 for some points. This is shown in [1]
for the case of two intervals. This is not a problem for the eikonal
equations because these special points do not appear in the
region V.
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local terms, it also holds for massive free fermions and free
massive scalars [23]. As the two temperatures in both
directions have to coincide, the local term in H is propor-
tional to the energy density operator T00.

B. Rindler space

In Rindler space (corresponding to V ¼ fx⃗=x1 > 0g) we
have that the exact modular Hamiltonian for any theory is

H ¼ 2π

Z
V
dd−1xx1T00ðx⃗Þ: ð5:9Þ

Hence βðx⃗Þ ¼ 2πx1, independently of direction. However,
it is instructive to obtain this result using the eikonal
equations.
We take cylindrical coordinates r; θ; x⃗∥ ¼ fx3;…; xd−1g

with x1 ¼ r cosðθÞ and x0 ¼ r sinðθÞ. Due to the rotational
and translational symmetries of the problem in Euclidean
space we take

A ¼ θ̂

r
; ð5:10Þ

B ¼ fðrÞr̂þ k⃗; ð5:11Þ

with k⃗ ¼ f0; 0; k1;…; kd−1g, and θ̂; r̂, the unit vectors
proportional to the gradient of the coordinates. This
corresponds to a wave solution obtained by separation of
variables of the form

S ∼ eaþib ¼ esθþisk⃗·x⃗∥þishðrÞ; ð5:12Þ

with h0ðrÞ ¼ fðrÞ. It follows from jAj ¼ jBj that

fðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2
− k⃗2

r
: ð5:13Þ

If r > jk⃗j−1 we have an imaginary fðrÞ and B. In that case
we could pass the part fðrÞr̂ of B to A, but then Awould not
be normal to V. We see that the solution has a cylindrical
domain given by r < jk⃗j−1 and cannot be extended to all
space. Physically, this is because for r > jk⃗j−1, in the
eikonal limit s → ∞, the wave solution is exponentially
damped with a large s factor in the exponent and has to be
considered zero in this range. This is no impediment to get
a solution for any x⃗ ∈ V with arbitrary direction B̂ðx⃗Þ.
Taking a point x⃗ with θ ¼ 0, x1 ¼ r on V we have

Bðx⃗Þ ¼ fðx1Þx̂1 þ k⃗: ð5:14Þ

Note that for fixed x1 we can take solutions with the two
signs in (5.13), and with different k⃗, having jk⃗j ranging
from 0 to x−11 . In this way we can choose any direction for

B̂ðx⃗Þ. There is exactly one solution for each direction B̂ðx⃗Þ
at a point x⃗ ∈ V.15 However, in this particular problem for
the Rindler wedge, for any choice of solution we have

A0 ¼ jBj ¼ x−11 ; ð5:15Þ

independently of the direction of B̂ðx⃗Þ. Therefore, as
expected,

βðB̂ðx⃗Þ; x⃗Þ ¼ 2π

A0ðB̂ðx⃗Þ; x⃗Þ
¼ 2πx1: ð5:16Þ

VI. LOCAL TEMPERATURES FOR A WALL

In this section we compute explicitly the local temper-
atures for a region with the form of a wall in d dimensions.
Without loss of generality we set the width L of the wall V
to L ¼ 1 in the x1 direction and unlimited in the other
spatial directions, i.e., we take V¼ff0;x1;…;xd−1g=x1∈
ð−1=2;1=2Þ;xi∈ð−∞;∞Þ, and i ¼ 2;…; xd−1g.
We will not solve the eikonal equations directly, but

instead will first derive further identities for the solutions S
of the Klein-Gordon equation that apply to the present case
due to the particular symmetries of the problem. We then
make the eikonal approximation. The results for the eikonal
variables and the local temperatures will be given in terms
of solutions of algebraic equations of the fourth degree.
By separation of variables we can dimensionally reduce

the problem to a massive one in d ¼ 2. For ease of notation
we will call x ¼ x1, y ¼ x0, and x⃗∥ ¼ fx3;…; xd−1g.
We take for the solution of the wave equation

Sðx; yÞeisk⃗·x⃗∥ ; ð6:1Þ

with k⃗ ¼ f0; 0; k1;…; kd−1g. The equation for the function
S in d ¼ 2 is

ð−∇2 þ s2k2ÞSðx; yÞ ¼ 0; ð6:2Þ

with k ¼ jk⃗j. S satisfies the boundary conditions (2.8) for
the two-dimensional problem with V given by the interval
I ¼ ð−1=2; 1=2Þ of width L ¼ 1. Equation (6.2) corre-
sponds to a massive field withm ¼ sk, but in contrast to the
discussion in Sec. II, here we are not allowed to discard the
mass since we are interested in the high-energy limit. This
is because the momentum in the parallel direction to the
wall can be as large as we want, and in particular it can be
of the same order as s. To keep track of the fact that we are
interested in high momentum as well as high s we have
defined the two-dimensional mass to be sk, where kwill be
Oð1Þ in the eikonal parameter.

15However, this set of solutions for a fixed x⃗ does not exhaust
the full set of solutions since there are solutions with range not
including the point x⃗.
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Now we make use of the techniques initially developed
in [30] to solve the problem of scattering of waves from a
metallic strip. These were adapted in [31] to a slightly
different version of the present problem where the multi-
plicative boundary condition on the interval is given by a
phase instead of a real factor (that is, a problem with
imaginary s). This problem is related to the Rényi entropies
of a massive field in an interval. We derive the correspond-
ing equations for the function S in Appendix B.
For a scalar field of massm in d ¼ 2 satisfying the Klein-

Gordon equation with the multiplicative boundary con-
ditions on an interval ðL1; L2Þ, L ¼ L2 − L1, we have,
writing z ¼ xþ iy,

�
ðL1 − zÞ∂z − ðL2 − z̄Þ∂ z̄ −

td0

2d

�
S

¼ C00

�
−
iL
d
∂z þ

2sd − itd0

2ð1þ d2Þ
�
S̄; ð6:3Þ

supplemented by its conjugate equation

�
ðL1 − z̄Þ∂ z̄ − ðL2 − zÞ∂z −

td0

2d

�
S̄

¼ C�
00

�
iL
d
∂ z̄ þ

2sdþ itd0

2ð1þ d2Þ
�
S: ð6:4Þ

The function C00ðtÞ satisfies jC00j2 ¼ dðtÞ2 þ 1, and the
real function dðtÞ satisfies a nonlinear ordinary differential
equation of the Painlevé V type,

d00 þ d0

t
−
ð1þ 2d2Þðd0Þ2
dð1þ d2Þ þ ðt2ð1þ 2d2Þ þ ðt2 − 4s2Þd4Þ

t2dð1þ d2Þ
¼ 0; ð6:5Þ

with boundary conditions

dðtÞ∼−
1

2sðlogðtÞ− logð2Þþ2γEþðψðisÞþψð−isÞÞ=2Þ ;

t→ 0; ð6:6Þ

dðtÞ ∼ π

2 sinhðπsÞK2isðtÞ
; t → ∞; ð6:7Þ

where γE is the Euler constant, K is the modified Bessel
function, and ψ is the digamma function.16

Here we have to choose L1 ¼ −1=2, L2 ¼ 1=2, L ¼ 1,
and hence t ¼ m ¼ sk.

A. The eikonal limit for the Painlevé equation

We first take the eikonal limit s → ∞ of the solution of
the Painlevé equation (6.5) with boundary conditions (6.6)
and (6.7) that determine the coefficients of the equations for
S we are going to use. We take the limit of s → ∞,
t ¼ mL ¼ m ¼ sk → ∞, keeping k fixed. Then, this is not
directly related to the asymptotic limit t → ∞ and s fixed
that describes the boundary condition of the differential
equation. The inspection of the solutions in this limit shows
there are two regimes.
First, for k < 2, the function d, which depends on s and

t ¼ sk, converges to a finite value fðkÞ ≔ lims→∞dsðskÞ,17
and in consequence its derivatives lims→∞

d
dt dsðskÞ ¼

s−1f0ðkÞ, lims→∞
d2

dt2 dsðskÞ ¼ s−2f00ðkÞ, go to zero with
inverse powers of s. Plugging this information into the
differential equation (6.5) gives an algebraic explicit
solution for dsðtÞ:

dsðskÞ ∼ fðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
k

2 − k

r
; k < 2; s → ∞: ð6:8Þ

For k > 2 instead, the asymptotic solution (6.7) for large
t is still valid for large s and t ¼ ks. We have using the
asymptotics of the Bessel function [32] an exponentially
increasing dsðskÞ,

dsðskÞ ∼ cons
ffiffiffi
s

p
e

ffiffiffiffiffiffiffiffi
k2−4

p
s; k > 2; s → ∞: ð6:9Þ

It can be checked that this expression [as the one in (6.8) for
k < 2] also solves the Painlevé equation at leading order in
s for k > 2. With this behavior all derivatives are of the

same order, and we have d0ðtÞ=dðtÞ ∼
ffiffiffiffiffiffiffiffi
k2−4

p
k .

B. Eikonal limit for the equations of SðzÞ and angle-
dependent temperatures

Nowwe apply the eikonal limit to the equations for S and
S̄ (6.3) and (6.4). Both S and S̄ will have a component
proportional to eα and another one proportional to eα

�
. In

the large s limit these two components have to satisfy the
equations (6.3) and (6.4) independently because the differ-
ent large phases cannot be coherent in any small region.
Hence, we can replace S by g1eα and S̄ by g2eα, where g1
and g2 are slowly varying functions of the position. We then
set

∂xS ¼ sXS; ∂xS̄ ¼ sXS̄; ð6:10Þ

∂yS ¼ sYS; ∂yS̄ ¼ sYS̄; ð6:11Þ

where
16The function d is related to the one called u in [31] by the

change of variables d ¼ i tð1þu2Þ
uð1þ2isÞþtu0, or u ¼ 2sd−itd0

tð1þd2Þ, and taking
a → −is in that work.

17We are writing explicitly the s dependence of dðtÞ as
dsðtÞ.
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X ¼ Ax þ iBx; Y ¼ Ay þ iBy ð6:12Þ

are two complex numbers with the information of the x, y
components of A⃗ and B⃗. We also have A∥ ¼ 0, B∥ ¼ k⃗.
Replacing this into (6.3) and (6.4), and expanding to the
leading order in s, we get two complex algebraic equations
linear in S and S̄. The determinant of this system of linear
equations must vanish and this gives a complex equation
for X and Y. This is supplemented by the Klein-Gordon
equation

X2 þ Y2 ¼ k2; ð6:13Þ

to give the complete solution for the vectors A⃗ and B⃗.
As explained above, there are two regimes for the large s

expansion of the coefficients of the equations.

1. k > 2

For k > 2, taking into account (6.9), we get

Y þ y2X2 þ ðx2 − 1=4ÞY2 − 2xyXY ¼ 1: ð6:14Þ

This, supplemented with (6.13), give us four solutions for
each point ðx; yÞ. Two of them are purely real and have to
be discarded. Another duplication corresponds to complex
conjugated solutions B⃗ → −B⃗. There are complex solutions
only for jx⃗ − L1j < k−1 or jx⃗ − L2j < k−1, that is, inside
two circles of radius k−1 around the two end points of the
interval. This is analogous to the case of the Rindler space.
In fact, the solutions inside these circles exactly coincide
with Rindler solutions. The contours for a and b are
illustrated in Fig. 2.
This situation can be easily understood. The Rindler

solutions around each interval end point have a domain
restricted to a radius k−1 (see Sec. V B). For k > 2, which

represents a high enough mass or parallel momentum, these
Rindler solutions do not overlap, and the respective
domains do not reach the midpoint of the interval at the
origin. Hence, these are genuine solutions of the eikonal
problem on the wall. This will change for k < 2 where the
Rindler solutions have a nonzero overlap.
Computing the solutions on y ¼ 0 on the interval gives

for the nonzero components

Bx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2ðxþ 1=2Þ2

p
xþ 1=2

;

Ay ¼ ð1=2þ xÞ−1; −1=2 < x < −1=2þ k−1: ð6:15Þ

Bx ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2ð1=2 − xÞ2

p
1=2 − x

; Ay ¼ ð1=2 − xÞ−1;

1=2 − k−1 < x < 1=2: ð6:16Þ

This gives Rindler-like inverse temperatures 2π=Ay inde-
pendent of k, and hence independent of angle in the plane
of the wall, but in contrast to the Rindler case, this situation
is valid for a restricted range of angles. Let us compute the
angle θ ∈ ð0; πÞ from the positive direction of the x axes,

cosðθÞ ¼ Bxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ k2

p ¼ Bx

Ay
; sinðθÞ ¼ k

Ay
: ð6:17Þ

The solution with k > 2, having Rindler-like temperatures,
is restricted to the range

βðx; θÞ ¼ 2πð1=2þ xÞ; −1=2 < x < 0;

acosð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1þ xÞ

p
Þ

< θ < acosð−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xð1þ xÞ

p
Þ: ð6:18Þ

βðx; θÞ ¼ 2πð1=2 − xÞ; 0 < x < 1=2;

acosð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
Þ < θ < acosð−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
Þ:

ð6:19Þ
That is, this solution holds for directions that are enough
away from the x axes. A contour plot of βðx; θÞ showing the
range of the solution is shown in Fig. 4. Moreover in Fig. 5
we show the temperature in the region outside the strip; in
particular we plot the x > 1=2 zone but the same behavior
is obtained in the reflected x < −1=2 region.

2. k < 2

For k < 2 we do the same calculation but use (6.8)
for the limit of the coefficients in the equations for S and S̄.
The result is the equation

−4k2 þ kðX2ð1þ 4y2Þ − 8xyXY þ 4Yð1þ x2YÞÞ ¼ 0:

ð6:20Þ
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FIG. 2. The lines of constant a and b corresponding to the
solution of the eikonal problem for a wall in the case k > 2 (in
this figure k ¼ 20=9). The solution corresponds to two non-
overlapping Rindler solutions, one around each of the interval
end points.
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This equation is again quadratic on X and Y, but in contrast
to (6.14), it depends on k. To complete the system of
equations we must also use Eq. (6.13). Combining these
equations a quartic equation can be obtained for X or Y
alone. We again have four solutions, two of which are
always real and the other two are related to each other by
complex conjugation. It can be checked that the vectors A⃗
and B⃗, defined by this system through (6.12), are indeed
gradients and the system provides a nontrivial solution of
the eikonal equations.

The solutions of the quartic equations can be treated
numerically. We show an example of the orthogonal
coordinate system a, b for k ¼ 1=2 in Fig. 3. We see
the range of the solution extends further than the case
k > 2, but it is again limited to certain bounded regions
of the plane containing the end points of the intervals.
In the limit of k → 0 we get the massless case shown in
Fig. 1. In this limit the range extends to the full plane.
On the interval at y ¼ 0 the solutions are

Bx ¼ �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − kð1 − ð4þ kÞx2 þ 4kx4Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − kð4 − kÞð1 − 4x2Þ

pq
1 − 4x2

; ð6:21Þ

Ay ¼
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − kð4 − kÞð1 − 4x2Þ

p
1 − 4x2

; ð6:22Þ

and are valid in the range −
ffiffi
2
k

q
< x <

ffiffi
2
k

q
, outside of

which Bx turns out imaginary and the eikonal solution
vanishes.
Written in terms of the angle, we have the following

expression for β ¼ ð2πÞ=Ay,

βðx; θÞ ¼ πð1 − 4x2Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ð1−4x2ÞðsinðθÞ−ð1−4x2ÞÞ sinðθÞð1−sinðθÞÞ

ð1−8x2þcosð2θÞÞ2
q :

ð6:23Þ

This is valid exactly where the solutions for k > 2 are not,
that is,

0 ≤ θ ≤ acosð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxjð1 − jxjÞ

p
Þ;

acosð−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxjð1 − jxjÞ

p
Þ ≤ θ ≤ π: ð6:24Þ

We see the temperatures are angle dependent for a fix x.
A contour plot of the function βðx; θÞ is shown in Fig. 4.
The two regimes k > 2 and k < 2 are separated by a dashed
curve. Even if there is a “phase transition” in the solution,
βðx; θÞ and its first derivative are continuous at the
transition point (while the second derivatives are not). A
contour plot for βðx; θÞ for the exterior region V̄ given by
jxj > 1=2 is shown in Fig. 5 (only the part x > 1=2 is
plotted).
For angle θ ¼ 0 the temperatures are given by the d ¼ 2,

zero mass solution β ¼ 2πð1=4 − x2Þ. For angle θ ¼ π=2
the solution with k > 2 applies for all x, and the

FIG. 3. The orthogonal lines of constant a and b for the solution
of the eikonal problem corresponding to a wall in the case
k ¼ 1=2. The domain of the solution is a bounded region in the
plane (bounded by the black curve), but it is not disjoint, and in
this sense is intermediate between the disjoint bounded solution
for k > 2 (Fig. 2) and the massless solution k ¼ 0 that occupies
all the plane (Fig. 1).

0.4 0.2 0.0 0.2 0.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

FIG. 4. Contour plot of βðx; θÞ. The contour curves are equally
spaced in β. Warmer colors indicate higher temperatures. The
dashed lines separate the two regimes k > 2 (the two regions
attached to the end points x ¼ �1=2) and k < 2. For k > 2, β is
independent of θ and coincides with the Rindler result corre-
sponding to the plane nearest to x. The k < 0 solution which
describes β for the rest of the x, θ plane does show angle
dependence of temperatures for fix x.
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temperatures are like Rindler temperatures corresponding
to the plane that is nearer to x. For intermediate angles β lies
within these two curves (see Fig. 6). This is in accordance
with the monotonicity property of relative entropy. This
property implies that βðx; θÞ for fixed x, θ has to increase if
the region is increased. Hence all β of the wall have to be
less than the ones of a Rindler half-space including the wall
and with the boundary coinciding with one of the bounda-
ries of the wall. This bound is saturated for angle π=2. On
the other hand, the wall contains a sphere of diameter
L ¼ 1, and β for the sphere is the same as the one for a
d ¼ 2 interval. This lower bound is saturated here for angle
θ ¼ 0. A wall will also contain smaller walls. The corre-
sponding inequality is satisfied because of the property of
convexity of the curves shown in Fig. 6.

VII. FINAL REMARKS

From first principles, we have calculated the relative
entropy of a localized high-energy excitation and the
vacuum state in a region V for free fields. The result is
given in terms of a particular geometric problem involving
two orthogonal gradient vector fields of the same modulus
sourced at the boundary ∂V of the region. The result is the
same for scalars and fermions, and it implies the relative
entropy is proportional to the excitation energy. The
coefficient is an inverse temperature that is generally
direction dependent. We computed these temperatures
explicitly for the geometry of a wall.
One could wonder about the reason for the proportion-

ality of relative entropy and energy for localized excita-
tions. This proportionality holds even if the local terms in
H are not given exclusively by the energy density operator
in the general case. As explained in [23] this is a
consequence of the Rindler result plus relative entropy
monotonicity. In the Rindler case one can trace this
proportionality to the fact that the modular Hamiltonian
is a space-time symmetry and the symmetry generator is
linear in the energy density operator. In the general case, if
we forget about monotonicity and interrogate our explicit
calculations, we see the origin of linearity with energy in
the fact that, even if there is no rotational symmetry in
Euclidean space, the only source of the local terms in the
modular Hamiltonian are the vectors A⃗ and B⃗ that have a
geometric origin. Being gradients of a phase, they have
specific dimension 1. These can be thought of as momen-
tum variables generated by the “rotational” source located
at ∂V.
The eikonal equations are a certain extension to higher

dimensions of the holomorphicity property that holds in
d ¼ 2. It would be interesting to understand these equations
better from the mathematical point of view. In particular,
there should be a way to prove the monotonicity of βðp̂; x⃗Þ
with the size of V that must hold because of the relation
with relative entropy. Wewould also like to understand how
to solve these equations in more general cases. There are
interesting properties of these equations such as that if α is a
solution, fðαÞ, with f an analytic function, is also a solution
(locally). However, this is not enough to produce new
interesting solutions to the present problem. The equations
are local in nature but the solutions depend strongly on the
boundary conditions far away. One might be tempted to
think there should be some higher dimensional analogous
to the Cauchy integral formula that gives the general
solution in d ¼ 2. That would allow one to get the solution
from the boundary conditions directly.
Another open question is how these results modify for

interacting theories. Since the local temperatures are by
definition a property of the high-energy limit, it is reason-
able to think the problem will not be modified for theories
with a free UV fix point, especially super-renormalizable
theories. This points towards a universality of the local

FIG. 5. Contour plot of βðx; θÞ in a region outside the strip,
x > 1=2. The contour curves are equally spaced in β. Warmer
colors indicate higher temperatures. As before, the dashed lines
separate the two regimes k > 2 and k < 2. The reflected contour
plot is obtained in the region x < −1=2.
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FIG. 6. The blue curves are βðx; θÞ as a function of x for, from
bottom to top, θ ¼ 0.3, 0.6, and 1. They are straight lines for
values of jxj ∼ 1=2, until some specific jxj depending on the
angle. For smaller jxj they follow a different analytic shape
described in the text. The inverse temperature β increases with
angle for θ ∈ ð0; π=2Þ. It is always bounded below by the d ¼ 2

solution 2πð1=4 − x2Þ corresponding to θ ¼ 0 (lowest black
dashed curve) and bounded above by the θ ¼ π=2 solution
corresponding to the Rindler solution of the nearest plane (upper
black dashed curve).
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temperatures. For theories interacting in the UV the
situation is much less clear. In this sense, it would be
interesting to understand if there is a simple way to
compute these temperatures for holographic theories.
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APPENDIX A: UNIQUENESS OF THE
SOLUTIONS GIVEN THE

BEHAVIOR AT ∂V
In this Appendix, we show the solution of the wave

equation with multiplicative boundary conditions on the cut
V is uniquely determined by its boundary behavior on ∂V.
We will treat the case of a scalar, but analogous results hold
for the Dirac field.
In order to show this, let us consider a Green function

Gðx; yÞ satisfying the boundary conditions of the problem

ð−∇2
x þm2ÞGðx; yÞ ¼ δðdÞðx − yÞ; ðA1Þ

lim
y0→0þ

Gðx; ðy0; y⃗ÞÞ ¼ e2πs lim
y0→0−

Gðx; ðy0; y⃗ÞÞ;

∀ y⃗ ∈ V; ðA2Þ

lim
jyj→∞

Gðx; yÞ ¼ 0; ðA3Þ

Gðx; yÞ bounded for y → ∂V: ðA4Þ

The Green function will not be unique owing to the
existence of solutions of the homogeneous wave equation
with the same boundary conditions.18 However, in the
following we just need any Green function for the problem.
Note (A2) has a factor e2πs opposite to the one in (2.8)
and (2.25).
Consider the current

JxμðyÞ ¼ ∂y
μGðx − yÞSðyÞ −Gsðx − yÞ∂μSðyÞ: ðA5Þ

This differs from the current in (2.12) in that, now, the
Green function satisfies the multiplicative boundary con-
ditions. We have

∂μJxμðyÞ ¼ −δðdÞðx − yÞSðyÞ: ðA6Þ

We integrate this equation on M and notice that due to the
opposite factors in the boundary conditions for SðyÞ and
Gðx; yÞ the current is continuous across the cut and there is
no boundary value coming from V. However, we still have
a contribution on ∂V, where the current is singular. Taking
a thin tube-like surface ∂Vϵ of width ϵ around ∂V and we
have

−SðxÞ ¼
Z
M

ddy∂μJxμðyÞ ¼ −
Z
∂Vϵ

dd−1yημðyÞJxμðyÞ;

ðA7Þ
where ημðyÞ is the outward pointing unit vector normal to
∂Vϵ. This shows the full solution SðxÞ is determined by the
values in the limit x → ∂V. To see this more explicitly,
we take local coordinates y∥; z; z̄ near a point of ∂V,
where y∥ describes the coordinates along ∂V and the two-
dimensional complex coordinates z, z̄ the directions
perpendicular to ∂V. The leading terms in the solutions
for Gðx; yÞ and SðyÞ must have the following general form
near a point y∥ ∈ ∂V (jzj; jz̄j ≪ 1)

Gðx; yÞ ∼U1ðx; y∥Þz−is þ U2ðx; y∥Þz̄is; ðA8Þ
SðyÞ ∼ V1ðy∥Þzis þ V2ðy∥Þz̄−is: ðA9Þ

Then we get from (A7)

SðxÞ ¼ −i4πs
Z
∂V

dy∥
ffiffiffiffiffiffiffiffiffiffiffi
gðy∥Þ

q
ðU1ðx; y∥ÞV1ðy∥Þ

−U2ðx; y∥ÞV2ðy∥ÞÞ: ðA10Þ
This shows explicitly how the solution is determined by the
asymptotic values on ∂V. However, the functions V1 and
V2 are not independent. The solutions are parametrized by
only one function of the boundary instead. To see this we
can take another solution ~S of the problem corresponding to
the opposite value −s, with asymptotic behavior

~SðyÞ ∼W1ðy∥Þz−is þW2ðy∥Þz̄is: ðA11Þ

We have, following the above steps but for the current
generated by S and ~S,

0 ¼
Z
∂V

dy∥
ffiffiffiffiffiffiffiffiffiffiffi
gðy∥Þ

q
ðW1ðy∥ÞV1ðy∥Þ −W2ðy∥ÞV2ðy∥ÞÞ:

ðA12Þ

Once all these relations are satisfied, (A10) gives a unique
solution given the boundary asymptotic values for S since
the ambiguities on the Green function are due to additions
of homogeneous solutions that do not contribute to this
formula owing to (A12).
In particular, the time reflected, conjugated function

~SðxÞ ¼ S�ð−x0; x⃗Þ is a solution of the problem with

18This is in contrast with the case where s is imaginary [31].
For imaginary s there are no solutions of the homogeneous wave
equation bounded in ∂V, and the Green function is unique.
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parameter −s. The asymptotic behavior follows from (A9)
by replacing z ↔ z̄ and taking complex conjugates:
W1 ¼ V�

1, W2 ¼ V�
2. Then for any solution S we have

the self-consistency relation for the asymptotic valuesZ
∂V

dy∥
ffiffiffiffiffiffiffiffiffiffiffi
gðy∥Þ

q
ðjV1ðy∥Þj2 − jV2ðy∥Þj2Þ ¼ 0: ðA13Þ

APPENDIX B: MASSIVE SCALAR WITH
BOUNDARY CONDITIONS ON

AN INTERVAL

In this Appendix we find linear partial differential
equations of the first order for the functions SðxÞ giving
the eigenvectors of the correlator kernels for a massive
scalar in an interval in d ¼ 2. The constant coefficients
appearing in these equations are given in terms of solutions
of Painlevé V equations. The methods we use are an
adaptation of the ones in [30,31]. The main difference of
these works with the present case is that here the factor in
the boundary condition is real (2.8), instead of a phase as in
[31]. When the factor is a phase there are no solutions
bounded on the cut, while there are exactly two solutions
for a real factor.19

We take an interval ½L1; L2� with length L ¼ L2 − L1.
We write the solution Sðx; y; L1; L2; m; sÞ in complex
coordinates as Sðz; z̄; L1; L2; m; sÞ ≔ SðzÞ. As shown in
Appendix A, for each s there are exactly two solutions of
(2.7) and (2.8) for an interval. These are complex conjugates
of each other, SðzÞ, S̄ðzÞ. Because S is bounded near L1 and
solves the Klein-Gordon equation and boundary conditions,
it must have an asymptotic expansion of the form

SðzÞ ¼ ðL1 − zÞ−is
X∞
k;n¼0

AknðL1 − zÞkðL1 − z̄Þn

þ ðL1 − z̄Þis
X∞
k;n¼0

BknðL1 − zÞkðL1 − z̄Þn; ðB1Þ

where the coefficients are functions of L, s, and m. We will
write Ak;nðLÞ andBk;nðLÞ. Wewill only need this expansion
up toquadratic terms. For convenience, sincewehave exactly
two independent solutions conjugated to each other, we can
choose

A00 ¼ 1; B00 ¼ 0; ðB2Þ

which is the solution asymptotically analytic at L1. In
consequence S̄ has Ā00 ¼ 0, B̄00 ¼ 1 (we write A�

00 for

the complex conjugate and Ā00 for the quantity belonging to
the conjugated solution).
The Helmholtz (Euclidean Klein-Gordon) equation for S

implies relations for the coefficients. In particular we have
A01 ¼ A02 ¼ 0, B11 ¼ B10 ¼ B20 ¼ 0, and

A11 ¼
m2

4ð1 − isÞ ⇒ ∂LA11 ¼ 0: ðB3Þ

We have a similar expression for the expansion of S
near L2

SðzÞ ¼ ðz − L2Þis
X∞
k;n¼0

CknðL1 − zÞkðL1 − z̄Þn

þ ðz̄ − L2Þ−is
X∞
k;n¼0

DknðL1 − zÞkðL1 − z̄Þn; ðB4Þ

and equivalent relations for the coefficients. For the lowest
ones we have C01 ¼ C02 ¼ D10 ¼ D20 ¼ 0,

C11 ¼
m2C00

4ð1þ isÞ ; D11 ¼
m2D00

4ð1 − isÞ : ðB5Þ

1. Equations for SðzÞ and the coefficients

A partial derivative ∂L1
S also obeys the wave equation

and boundary condition, except that it is now unbounded at
L1. This divergence can be compensated by adding
derivatives of S and S̄ with respect to z, to obtain a
bounded function. This must then be a linear combination
of S and S̄ by the uniqueness of the solutions. The
coefficients on these combinations can be adjusted to be
the same at leading order near L1, giving the following
equation valid in the plane

D�
00∂L1

SþD�
00∂zS − C00∂zS̄ ¼ ð1 − isÞB�

01C00S

þ ð1þ isÞB01D�
00S̄: ðB6Þ

Looking at the expansion of this equation at L2 we get the
following differential equations for the coefficients

_C00D�
00 ¼ ð1þ isÞC10D�

00 − ð1þ isÞC00D�
01

− ð1 − isÞB�
01ðC00Þ2 − ð1þ isÞB01ðD�

00Þ2;
ðB7Þ

_D00D�
00 ¼ −ð1 − isÞB�

01C00D00 − ð1þ isÞB01C�
00D

�
00;

ðB8Þ

_D01D�
00 ¼ −

1

4ð1 − isÞ ðC00ðm2C�
00 − 4ðiþ sÞ2B�

01D01

þD�
00ð4ð1þ s2ÞB01C�

10 −m2D00ÞÞÞ:
ðB9Þ

19However, with sufficient care, the results of this Appendix
could be obtained from [31] by analytic continuation from
imaginary to real s. The present function S is then proportional
to the one called S1 in that work, where one replaces a → −is.
Note also that the names of the interval end points are inter-
changed here with respect to [31].
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In the same line, one can notice a rotation operator
around the point L1

∂L1
R ≔ −iðx∂y − y∂x − L1∂yÞ ¼ −ðL1 − zÞ∂z þ ðL1 − z̄Þ∂ z̄

¼ ðz − L2Þ∂z − ðz̄ − L2Þ∂ z̄ þ Lð∂z − ∂ z̄Þ; ðB10Þ

commutes with −∇2 þm2, and then ∂L1
R S obeys the same

equations of motion and boundary conditions as S. The
divergences and finite leading order terms at L1 can be
compensated conveniently, to get the equation

D�
00∂L1

R Sþ LD�
00∂ z̄S − LC00∂zS̄

¼ fLð1 − isÞB�
01C00 − isD�

00gS
− Lð1þ isÞB01D�

00S̄; ðB11Þ

which is valid in the plane. Note this is a first order partial
differential equation for S and S̄. Evaluating the coefficients
of the expansion of this equation at L1 and L2 up to first
order gives the following algebraic equations for the
coefficients

0 ¼ Lð−1þ isÞB�
01C00D00 þ Lð1þ isÞB01C�

00D
�
00

þ 2isD00D�
00; ðB12Þ

0 ¼ −ðiþ sÞðiþ 2sÞD�
00D01 − L

m2

4
ðjD00j2 − jC00j2Þ

þ Lð1 − isÞ2B�
01C00D01

− Lð1þ s2ÞB01C�
10D

�
00: ðB13Þ

0 ¼ Lðm2 − 4ð1þ s2ÞB01B�
01ÞC00

− 4ð−iþ sÞððiþ Lð−iþ sÞA�
10ÞB01

− Lð−2iþ sÞB02ÞD�
00; ðB14Þ

0 ¼ −4ðiþ sÞA10ðLðiþ sÞB�
01C00 − iD�

00Þ
þ Lð4ð−2þ 3isþ s2ÞB�

02C00

þ ðm2 − 4ð1þ s2ÞB01B01�ÞD�
00Þ: ðB15Þ

Using again the same argument, we note that the function
SðzÞ, reflected around the midpoint of the interval,

SRðzÞ ¼ SðL1 þ L2 − z̄Þ; ðB16Þ

is again a solution and hence a linear combination of S
and S̄. Evaluating leading order at L1 we get an equation
valid in the entire plane

SRðzÞ −D00ðLÞSðzÞ − C00ðLÞS̄ðzÞ ¼ 0: ðB17Þ

Expanding this equation at the end points up to second
order we get

A10D00 þ B�
10C00 ¼ D01; C10D00 þ C00D�

00 ¼ B01;

ðB18Þ

B01D00 þ A�
10C00 ¼ C10; D00 ¼ D�

00; ðB19Þ

C00C�
10 þD00D01 ¼ A10; jC00j2 ¼ jD00j2 þ 1: ðB20Þ

D00 and C00 are dimensionless and can be written as
functions of the dimensionless parameter t ¼ mL. From the
above equations we have

D00ðLÞ ¼ idðtÞ; jC00j2 ¼ d2ðtÞ þ 1: ðB21Þ

D00 is purely imaginary, and dðtÞ is real. Combining all
equations we get that the function dðtÞ satisfies the non-
linear ordinary differential equation (6.5) of the Painlevé V
type quoted in Sec. VI.
As explained in [27] the boundary condition for small t

(which corresponds to small mass) can be obtained by
using (2.15) with the massless solution and the Green
function in the limit of small mass. The boundary condition
for large t follows from the Painlevé connection formulas
[33]. In this way we get Eqs. (6.6) and (6.7) in Sec. VI.
The algebraic and differential equations determine all

variables in terms of dðtÞ, d0ðtÞ, and C00ðtÞ. In particular,
Eq. (B11) takes the form quoted in (6.3).
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