2,085 research outputs found

    Men, Muscles, and Body Image: Comparisons of Competitive Bodybuilders, Weight Trainers, and Athletically Active Controls

    Get PDF
    Objectives: To investigate body image and psychosocial adjustment among competitive bodybuilders, non-competitive weight trainers, and athletically active men. Methods: Participants were 40 men in each of the three groups who were assessed on body composition and multiple facets of body image evaluation, investment and anxiety, eating attitudes, and social self esteem. Results: Relative to the other two groups, competitive bodybuilders had greater body mass due to fat-free body mass. Although groups did not differ in their situational body image discomfort, competitive bodybuilders and weight trainers had a more positive global appearance evaluation and were more psychologically invested in their physical appearance. Compared with active controls, men in both weightlifting groups were more satisfied with their upper torso and muscle tone. Competitive bodybuilders reported more mid torso satisfaction than the other two groups. Competitive bodybuilders also wished to be significantly heavier than controls did and reported higher social self esteem but greater eating disturbance. Conclusions: The findings suggest that competitive bodybuilders as a group are not more muscle dysmorphic\u27\u27 than either non-competitive weight trainers or physically active men who do not train with weights

    The Discovery of Argon in Comet C/1995 O1 (Hale-Bopp)

    Get PDF
    On 30.14 March 1997 we observed the EUV spectrum of the bright comet C/1995 O1 (Hale-Bopp) at the time of its perihelion, using our EUVS sounding rocket telescope/spectrometer. The spectra reveal the presence H Ly beta, O+, and, most notably, Argon. Modelling of the retrieved Ar production rates indicates that comet Hale-Bopp is enriched in Ar relative to cosmogonic expectations. This in turn indicates that Hale-Bopp's deep interior has never been exposed to the 35-40 K temperatures necessary to deplete the comet's primordial argon supply.Comment: 9 pages, 2 figures. ApJ, 545, in press (2000

    A Complete Catalog of Swift GRB Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations

    Full text link
    We calculate durations and spectral paramaters for 218 Swift bursts detected by the BAT instrument between and including GRBs 041220 and 070509, including 77 events with measured redshifts. Incorporating prior knowledge into the spectral fits, we are able to measure the characteristic νFν\nu F_{\nu} spectral peak energy Epk,obsE_{\rm pk,obs} and the isotropic equivalent energy EisoE_{\rm iso} (1--10410^4 keV) for all events. This complete and rather extensive catalog, analyzed with a unified methodology, allows us to address the persistence and origin of high-energy correlations suggested in pre-Swift observations. We find that the Epk,obsE_{\rm pk,obs}-EisoE_{\rm iso} correlation is present in the Swift sample; however, the best-fit powerlaw relation is inconsistent with the best-fit pre-Swift relation at >5 sigma significance. Moreover, it has a factor >~ 2 larger intrinsic scatter, after accounting for large errors on Epk,obsE_{\rm pk,obs}. A large fraction of the Swift events are hard and subluminous relative to (and inconsistent with) the pre-Swift relation, in agreement with indications from BATSE GRBs without redshift. Moreover, we determine an experimental threshold for the BAT detector and show how the Epk,obsE_{\rm pk,obs}--EisoE_{\rm iso} correlation arises artificially due to partial correlation with the threshold. We show that pre-Swift correlations found by Amati et al.(2002), Yonetoku et al. (2004), Firmani et al.(2006) (and independently by others) are likely unrelated to the physical properties of GRBs and are likely useless for tests of cosmology. Also, an explanation of these correlations in terms of a detector threshold provides a natural and quantitative explanation for why short-duration GRBs and events at low redshift tend to be outliers to the correlations.Comment: 25 pages, 9 figures, 2 tables, Accepted to Ap

    Spatial Correlation Function of X-ray Selected AGN

    Full text link
    We present a detailed description of the first direct measurement of the spatial correlation function of X-ray selected AGN. This result is based on an X-ray flux-limited sample of 219 AGN discovered in the contiguous 80.7 deg^2 region of the ROSAT North Ecliptic Pole (NEP) Survey. Clustering is detected at the 4 sigma level at comoving scales in the interval r = 5-60 h^-1 Mpc. Fitting the data with a power law of slope gamma=1.8, we find a correlation length of r_0 = 7.4 (+1.8, -1.9) h^-1 Mpc (Omega_M=0.3, Omega_Lambda=0.7). The median redshift of the AGN contributing to the signal is z_xi=0.22. This clustering amplitude implies that X-ray selected AGN are spatially distributed in a manner similar to that of optically selected AGN. Furthermore, the ROSAT NEP determination establishes the local behavior of AGN clustering, a regime which is poorly sampled in general. Combined with high-redshift measures from optical studies, the ROSAT NEP results argue that the AGN correlation strength essentially does not evolve with redshift, at least out to z~2.2. In the local Universe, X-ray selected AGN appear to be unbiased relative to galaxies and the inferred X-ray bias parameter is near unity, b_X~1. Hence X-ray selected AGN closely trace the underlying mass distribution. The ROSAT NEP AGN catalog, presented here, features complete optical identifications and spectroscopic redshifts. The median redshift, X-ray flux, and X-ray luminosity are z=0.41, f_X=1.1*10^-13 cgs, and L_X=9.2*10^43 h_70^-2 cgs (0.5-2.0 keV), respectively. Unobscured, type 1 AGN are the dominant constituents (90%) of this soft X-ray selected sample of AGN.Comment: 17 pages, 8 figures, accepted for publication in ApJ, a version with high-resolution figures is available at http://www.eso.org/~cmullis/papers/Mullis_et_al_2004b.ps.gz, a machine-readable version of the ROSAT NEP AGN catalog is available at http://www.eso.org/~cmullis/research/nep-catalog.htm

    The warm absorber in NGC 5548: The lean years

    Full text link
    We study the variability of the warm absorber and the gas responsible for the emission lines in the Seyfert 1 galaxy NGC 5548, in order to constrain the location and physical properties of these components. Using X-ray spectra taken with the \textit{Chandra}-LETGS in 2002 and 2005, we study variability in the ionic column densities and line intensities. We find a lower \ion{O}{vii} forbidden emission line flux in 2005, while the Fe Kα\alpha line flux stays constant. The warm absorber is less ionized in 2005, allowing us to constrain its location to within 7 pc of the central source. Using both the observed variability and the limit on the FWHM of the \ion{O}{vii} f line, we have constrained the location of the narrow line region to a distance of 1 pc from the central source. The apparent lack of variability of the Fe Kα \alpha line flux does not allow for a unique explanation.Comment: 6 pages, 6 figures, accepted by A&

    Overview of the Far Ultraviolet Spectroscopic Explorer Mission

    Get PDF
    The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution. The instrument consists of four coaligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A and the other two use SiC coatings for optimized throughput between 905 and 1105 A. The gratings are holographically ruled to largely correct for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way as well as active galactic nuclei and QSOs for absorption line studies of both Milky Way and extra-galactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters. 6 pages + 4 figure

    X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05

    Full text link
    We present the results of the two most recent (2005) XMM-Newton observations of Saturn together with the re-analysis of an earlier (2002) observation from the XMM-Newton archive and of three Chandra observations in 2003 and 2004. While the XMM-Newton telescope resolution does not enable us to resolve spatially the contributions of the planet's disk and rings to the X-ray flux, we can estimate their strengths and their evolution over the years from spectral analysis, and compare them with those observed with Chandra. The spectrum of the X-ray emission is well fitted by an optically thin coronal model with an average temperature of 0.5 keV. The addition of a fluorescent oxygen emission line at ~0.53 keV improves the fits significantly. In accordance with earlier reports, we interpret the coronal component as emission from the planetary disk, produced by the scattering of solar X-rays in Saturn's upper atmosphere, and the line as originating from the Saturnian rings. The strength of the disk X-ray emission is seen to decrease over the period 2002 - 2005, following the decay of solar activity towards the current minimum in the solar cycle. By comparing the relative fluxes of the disk X-ray emission and the oxygen line, we suggest that the line strength does not vary over the years in the same fashion as the disk flux. We consider possible alternatives for the origin of the line. The connection between solar activity and the strength of Saturn's disk X-ray emission is investigated and compared with that of Jupiter. We also discuss the apparent lack of X-ray aurorae on Saturn and conclude that they are likely to lie below the sensitivity threshold of current Earth-bound observatories. A similar comparison for Uranus and Neptune leads to the same disappointing conclusion.Comment: 10 pages, 5 figures; to be published in 'Astronomy and Astrophysics

    XMM-Newton observations of IGRJ18410-0535: The ingestion of a clump by a supergiant fast X-ray transient

    Full text link
    IGRJ18410-0535 is a supergiant fast X-ray transients. This subclass of supergiant X-ray binaries typically undergoes few- hour-long outbursts reaching luminosities of 10^(36)-10^(37) erg/s, the occurrence of which has been ascribed to the combined effect of the intense magnetic field and rotation of the compact object hosted in them and/or the presence of dense structures ("clumps") in the wind of their supergiant companion. IGR J18410-0535 was observed for 45 ks by XMM-Newton as part of a program designed to study the quiescent emission of supergiant fast X-ray transients and clarify the origin of their peculiar X-ray variability. We carried out an in-depth spectral and timing analysis of these XMM-Newton data. IGR J18410-0535 underwent a bright X-ray flare that started about 5 ks after the beginning of the observation and lasted for \sim15 ks. Thanks to the capabilities of the instruments on-board XMM-Newton, the whole event could be followed in great detail. The results of our analysis provide strong convincing evidence that the flare was produced by the accretion of matter from a massive clump onto the compact object hosted in this system. By assuming that the clump is spherical and moves at the same velocity as the homogeneous stellar wind, we estimate a mass and radius of Mcl \simeq1.4\times10^(22) g and Rcl \simeq8\times10^(11) cm. These are in qualitative agreement with values expected from theoretical calculations. We found no evidence of pulsations at \sim4.7 s after investigating coherent modulations in the range 3.5 ms-100 s. A reanalysis of the archival ASCA and Swift data of IGR J18410-0535, for which these pulsations were previously detected, revealed that they were likely to be due to a statistical fluctuation and an instrumental effect, respectively.Comment: Accepted for publication on A&A. V2: Inserted correct version of Fig.1

    Accurate early positions for Swift GRBS: enhancing X-ray positions with UVOT astrometry

    Full text link
    Here we describe an autonomous way of producing more accurate prompt XRT positions for Swift-detected GRBs and their afterglows, based on UVOT astrometry and a detailed mapping between the XRT and UVOT detectors. The latter significantly reduces the dominant systematic error -- the star-tracker solution to the World Coordinate System. This technique, which is limited to times when there is significant overlap between UVOT and XRT PC-mode data, provides a factor of 2 improvement in the localisation of XRT refined positions on timescales of less than a few hours. Furthermore, the accuracy achieved is superior to astrometrically corrected XRT PC mode images at early times (for up to 24 hours), for the majority of bursts, and is comparable to the accuracy achieved by astrometrically corrected X-ray positions based on deep XRT PC-mode imaging at later times (abridged).Comment: 12 pages, 8 figures, 1 table, submitted to Astronomy and Astrophysics, August 7th 200
    corecore