2,085 research outputs found
Men, Muscles, and Body Image: Comparisons of Competitive Bodybuilders, Weight Trainers, and Athletically Active Controls
Objectives: To investigate body image and psychosocial adjustment among competitive bodybuilders, non-competitive weight trainers, and athletically active men. Methods: Participants were 40 men in each of the three groups who were assessed on body composition and multiple facets of body image evaluation, investment and anxiety, eating attitudes, and social self esteem. Results: Relative to the other two groups, competitive bodybuilders had greater body mass due to fat-free body mass. Although groups did not differ in their situational body image discomfort, competitive bodybuilders and weight trainers had a more positive global appearance evaluation and were more psychologically invested in their physical appearance. Compared with active controls, men in both weightlifting groups were more satisfied with their upper torso and muscle tone. Competitive bodybuilders reported more mid torso satisfaction than the other two groups. Competitive bodybuilders also wished to be significantly heavier than controls did and reported higher social self esteem but greater eating disturbance. Conclusions: The findings suggest that competitive bodybuilders as a group are not more muscle dysmorphic\u27\u27 than either non-competitive weight trainers or physically active men who do not train with weights
The Discovery of Argon in Comet C/1995 O1 (Hale-Bopp)
On 30.14 March 1997 we observed the EUV spectrum of the bright comet C/1995
O1 (Hale-Bopp) at the time of its perihelion, using our EUVS sounding rocket
telescope/spectrometer. The spectra reveal the presence H Ly beta, O+, and,
most notably, Argon. Modelling of the retrieved Ar production rates indicates
that comet Hale-Bopp is enriched in Ar relative to cosmogonic expectations.
This in turn indicates that Hale-Bopp's deep interior has never been exposed to
the 35-40 K temperatures necessary to deplete the comet's primordial argon
supply.Comment: 9 pages, 2 figures. ApJ, 545, in press (2000
A Complete Catalog of Swift GRB Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations
We calculate durations and spectral paramaters for 218 Swift bursts detected
by the BAT instrument between and including GRBs 041220 and 070509, including
77 events with measured redshifts. Incorporating prior knowledge into the
spectral fits, we are able to measure the characteristic spectral
peak energy and the isotropic equivalent energy
(1-- keV) for all events. This complete and rather extensive catalog,
analyzed with a unified methodology, allows us to address the persistence and
origin of high-energy correlations suggested in pre-Swift observations. We find
that the - correlation is present in the Swift
sample; however, the best-fit powerlaw relation is inconsistent with the
best-fit pre-Swift relation at >5 sigma significance. Moreover, it has a factor
>~ 2 larger intrinsic scatter, after accounting for large errors on . A large fraction of the Swift events are hard and subluminous
relative to (and inconsistent with) the pre-Swift relation, in agreement with
indications from BATSE GRBs without redshift. Moreover, we determine an
experimental threshold for the BAT detector and show how the -- correlation arises artificially due to partial
correlation with the threshold. We show that pre-Swift correlations found by
Amati et al.(2002), Yonetoku et al. (2004), Firmani et al.(2006) (and
independently by others) are likely unrelated to the physical properties of
GRBs and are likely useless for tests of cosmology. Also, an explanation of
these correlations in terms of a detector threshold provides a natural and
quantitative explanation for why short-duration GRBs and events at low redshift
tend to be outliers to the correlations.Comment: 25 pages, 9 figures, 2 tables, Accepted to Ap
Spatial Correlation Function of X-ray Selected AGN
We present a detailed description of the first direct measurement of the
spatial correlation function of X-ray selected AGN. This result is based on an
X-ray flux-limited sample of 219 AGN discovered in the contiguous 80.7 deg^2
region of the ROSAT North Ecliptic Pole (NEP) Survey. Clustering is detected at
the 4 sigma level at comoving scales in the interval r = 5-60 h^-1 Mpc. Fitting
the data with a power law of slope gamma=1.8, we find a correlation length of
r_0 = 7.4 (+1.8, -1.9) h^-1 Mpc (Omega_M=0.3, Omega_Lambda=0.7). The median
redshift of the AGN contributing to the signal is z_xi=0.22. This clustering
amplitude implies that X-ray selected AGN are spatially distributed in a manner
similar to that of optically selected AGN. Furthermore, the ROSAT NEP
determination establishes the local behavior of AGN clustering, a regime which
is poorly sampled in general. Combined with high-redshift measures from optical
studies, the ROSAT NEP results argue that the AGN correlation strength
essentially does not evolve with redshift, at least out to z~2.2. In the local
Universe, X-ray selected AGN appear to be unbiased relative to galaxies and the
inferred X-ray bias parameter is near unity, b_X~1. Hence X-ray selected AGN
closely trace the underlying mass distribution. The ROSAT NEP AGN catalog,
presented here, features complete optical identifications and spectroscopic
redshifts. The median redshift, X-ray flux, and X-ray luminosity are z=0.41,
f_X=1.1*10^-13 cgs, and L_X=9.2*10^43 h_70^-2 cgs (0.5-2.0 keV), respectively.
Unobscured, type 1 AGN are the dominant constituents (90%) of this soft X-ray
selected sample of AGN.Comment: 17 pages, 8 figures, accepted for publication in ApJ, a version with
high-resolution figures is available at
http://www.eso.org/~cmullis/papers/Mullis_et_al_2004b.ps.gz, a
machine-readable version of the ROSAT NEP AGN catalog is available at
http://www.eso.org/~cmullis/research/nep-catalog.htm
The warm absorber in NGC 5548: The lean years
We study the variability of the warm absorber and the gas responsible for the
emission lines in the Seyfert 1 galaxy NGC 5548, in order to constrain the
location and physical properties of these components. Using X-ray spectra taken
with the \textit{Chandra}LETGS in 2002 and 2005, we study variability in the
ionic column densities and line intensities. We find a lower \ion{O}{vii}
forbidden emission line flux in 2005, while the Fe K line flux stays
constant. The warm absorber is less ionized in 2005, allowing us to constrain
its location to within 7 pc of the central source. Using both the observed
variability and the limit on the FWHM of the \ion{O}{vii} f line, we have
constrained the location of the narrow line region to a distance of 1 pc from
the central source. The apparent lack of variability of the Fe K line
flux does not allow for a unique explanation.Comment: 6 pages, 6 figures, accepted by A&
Overview of the Far Ultraviolet Spectroscopic Explorer Mission
The Far Ultraviolet Spectroscopic Explorer satellite observes light in the
far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution.
The instrument consists of four coaligned prime-focus telescopes and Rowland
spectrographs with microchannel plate detectors. Two of the telescope channels
use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A
and the other two use SiC coatings for optimized throughput between 905 and
1105 A. The gratings are holographically ruled to largely correct for
astigmatism and to minimize scattered light. The microchannel plate detectors
have KBr photocathodes and use photon counting to achieve good quantum
efficiency with low background signal. The sensitivity is sufficient to examine
reddened lines of sight within the Milky Way as well as active galactic nuclei
and QSOs for absorption line studies of both Milky Way and extra-galactic gas
clouds. This spectral region contains a number of key scientific diagnostics,
including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters.
6 pages + 4 figure
X-rays from Saturn: A study with XMM-Newton and Chandra over the years 2002-05
We present the results of the two most recent (2005) XMM-Newton observations
of Saturn together with the re-analysis of an earlier (2002) observation from
the XMM-Newton archive and of three Chandra observations in 2003 and 2004.
While the XMM-Newton telescope resolution does not enable us to resolve
spatially the contributions of the planet's disk and rings to the X-ray flux,
we can estimate their strengths and their evolution over the years from
spectral analysis, and compare them with those observed with Chandra. The
spectrum of the X-ray emission is well fitted by an optically thin coronal
model with an average temperature of 0.5 keV. The addition of a fluorescent
oxygen emission line at ~0.53 keV improves the fits significantly. In
accordance with earlier reports, we interpret the coronal component as emission
from the planetary disk, produced by the scattering of solar X-rays in Saturn's
upper atmosphere, and the line as originating from the Saturnian rings. The
strength of the disk X-ray emission is seen to decrease over the period 2002 -
2005, following the decay of solar activity towards the current minimum in the
solar cycle. By comparing the relative fluxes of the disk X-ray emission and
the oxygen line, we suggest that the line strength does not vary over the years
in the same fashion as the disk flux. We consider possible alternatives for the
origin of the line. The connection between solar activity and the strength of
Saturn's disk X-ray emission is investigated and compared with that of Jupiter.
We also discuss the apparent lack of X-ray aurorae on Saturn and conclude that
they are likely to lie below the sensitivity threshold of current Earth-bound
observatories. A similar comparison for Uranus and Neptune leads to the same
disappointing conclusion.Comment: 10 pages, 5 figures; to be published in 'Astronomy and Astrophysics
XMM-Newton observations of IGRJ18410-0535: The ingestion of a clump by a supergiant fast X-ray transient
IGRJ18410-0535 is a supergiant fast X-ray transients. This subclass of
supergiant X-ray binaries typically undergoes few- hour-long outbursts reaching
luminosities of 10^(36)-10^(37) erg/s, the occurrence of which has been
ascribed to the combined effect of the intense magnetic field and rotation of
the compact object hosted in them and/or the presence of dense structures
("clumps") in the wind of their supergiant companion. IGR J18410-0535 was
observed for 45 ks by XMM-Newton as part of a program designed to study the
quiescent emission of supergiant fast X-ray transients and clarify the origin
of their peculiar X-ray variability. We carried out an in-depth spectral and
timing analysis of these XMM-Newton data. IGR J18410-0535 underwent a bright
X-ray flare that started about 5 ks after the beginning of the observation and
lasted for \sim15 ks. Thanks to the capabilities of the instruments on-board
XMM-Newton, the whole event could be followed in great detail. The results of
our analysis provide strong convincing evidence that the flare was produced by
the accretion of matter from a massive clump onto the compact object hosted in
this system. By assuming that the clump is spherical and moves at the same
velocity as the homogeneous stellar wind, we estimate a mass and radius of Mcl
\simeq1.4\times10^(22) g and Rcl \simeq8\times10^(11) cm. These are in
qualitative agreement with values expected from theoretical calculations. We
found no evidence of pulsations at \sim4.7 s after investigating coherent
modulations in the range 3.5 ms-100 s. A reanalysis of the archival ASCA and
Swift data of IGR J18410-0535, for which these pulsations were previously
detected, revealed that they were likely to be due to a statistical fluctuation
and an instrumental effect, respectively.Comment: Accepted for publication on A&A. V2: Inserted correct version of
Fig.1
Accurate early positions for Swift GRBS: enhancing X-ray positions with UVOT astrometry
Here we describe an autonomous way of producing more accurate prompt XRT
positions for Swift-detected GRBs and their afterglows, based on UVOT
astrometry and a detailed mapping between the XRT and UVOT detectors. The
latter significantly reduces the dominant systematic error -- the star-tracker
solution to the World Coordinate System. This technique, which is limited to
times when there is significant overlap between UVOT and XRT PC-mode data,
provides a factor of 2 improvement in the localisation of XRT refined positions
on timescales of less than a few hours. Furthermore, the accuracy achieved is
superior to astrometrically corrected XRT PC mode images at early times (for up
to 24 hours), for the majority of bursts, and is comparable to the accuracy
achieved by astrometrically corrected X-ray positions based on deep XRT PC-mode
imaging at later times (abridged).Comment: 12 pages, 8 figures, 1 table, submitted to Astronomy and
Astrophysics, August 7th 200
- …