8,952 research outputs found

    Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents

    Get PDF
    Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Food Availability, Foraging Behavior, and Diet of Autumn Migrant Landbirds in the Boise Foothills of Southwestern Idaho

    Get PDF
    Food availability and acquisition are critical components of a stopover site\u27s suitability, but we know relatively little about how changes in food availability affect the stopover ecology of migrating landbirds. We examined fruit and arthropod availability in three habitats, studied foraging behavior and diet, and investigated use versus availability for passerines migrating through southwestern Idaho in autumn. Hemiptera dominated foliage-dwelling arthropod communities in all three habitats, whereas Hymenoptera were most numerous among ground-dwelling arthropods. Mountain shrubland had relatively high biomass of both ground-dwelling and foliage-dwelling arthropods, whereas conifer forest had high biomass of foliage-dwelling arthropods only and shrub steppe had high biomass of ground-dwelling arthropods only. Species\u27 foraging behavior varied, but most species foraged in mountain shrubland more often than expected by chance. Diets of most species included a high proportion of certain Hemiptera and Hymenoptera with smaller proportions of Coleoptera, Diptera, and Heteroptera; Coleoptera and some Hemiptera were consistently preferred by most species. Importantly, all 19 bird species examined consumed some fruit, and this is the first documentation of frugivory for two warbler species. These data point to the importance of several arthropod taxa, especially the Hemiptera and Hymenoptera, and fruits to landbirds migrating in mountain shrubland in autumn. Finally, we found no effect of annual variation of fruit or arthropod abundance on migrants\u27 energetic condition, suggesting that food was sufficient for mass gain in all years of this study and/or that foraging behavior may be plastic enough to allow birds to gain mass despite annual differences in food availability

    Modeling and Prediction of Krueger Device Noise

    Get PDF
    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components

    Progress of Aircraft System Noise Assessment with Uncertainty Quantification for the Environmentally Responsible Aviation Project

    Get PDF
    Aircraft system noise predictions have been performed for NASA modeled hybrid wing body aircraft advanced concepts with 2025 entry-into-service technology assumptions. The system noise predictions developed over a period from 2009 to 2016 as a result of improved modeling of the aircraft concepts, design changes, technology development, flight path modeling, and the use of extensive integrated system level experimental data. In addition, the system noise prediction models and process have been improved in many ways. An additional process is developed here for quantifying the uncertainty with a 95% confidence level. This uncertainty applies only to the aircraft system noise prediction process. For three points in time during this period, the vehicle designs, technologies, and noise prediction process are documented. For each of the three predictions, and with the information available at each of those points in time, the uncertainty is quantified using the direct Monte Carlo method with 10,000 simulations. For the prediction of cumulative noise of an advanced aircraft at the conceptual level of design, the total uncertainty band has been reduced from 12.2 to 9.6 EPNL dB. A value of 3.6 EPNL dB is proposed as the lower limit of uncertainty possible for the cumulative system noise prediction of an advanced aircraft concept

    On Noise Assessment for Blended Wing Body Aircraft

    Get PDF
    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft system noise studies, which include aerodynamic performance, propulsion efficiency, flight profile limitation and many other factors. For a future aircraft concept to achieve the NASA N+2 noise goal it will require a range of fully successful noise reduction technology developments

    Landing Gear Noise Prediction and Analysis for Tube-and-Wing and Hybrid-Wing-Body Aircraft

    Get PDF
    Improvements and extensions to landing gear noise prediction methods are developed. New features include installation effects such as reflection from the aircraft, gear truck angle effect, local flow calculation at the landing gear locations, gear size effect, and directivity for various gear designs. These new features have not only significantly improved the accuracy and robustness of the prediction tools, but also have enabled applications to unconventional aircraft designs and installations. Systematic validations of the improved prediction capability are then presented, including parametric validations in functional trends as well as validations in absolute amplitudes, covering a wide variety of landing gear designs, sizes, and testing conditions. The new method is then applied to selected concept aircraft configurations in the portfolio of the NASA Environmentally Responsible Aviation Project envisioned for the timeframe of 2025. The landing gear noise levels are on the order of 2 to 4 dB higher than previously reported predictions due to increased fidelity in accounting for installation effects and gear design details. With the new method, it is now possible to reveal and assess the unique noise characteristics of landing gear systems for each type of aircraft. To address the inevitable uncertainties in predictions of landing gear noise models for future aircraft, an uncertainty analysis is given, using the method of Monte Carlo simulation. The standard deviation of the uncertainty in predicting the absolute level of landing gear noise is quantified and determined to be 1.4 EPNL dB

    Distinguishing schemes and tasks in children's development of multiplicative reasoning

    Get PDF
    We present a synthesis of findings from constructivist teaching experiments regarding six schemes children construct for reasoning multiplicatively and tasks to promote them. We provide a task-generating platform game, depictions of each scheme, and supporting tasks. Tasks must be distinguished from children’s thinking, and learning situations must be organized to (a) build on children’s available schemes, (b) promote the next scheme in the sequence, and (c) link to intended mathematical concepts

    Pulmonary tuberculosis in a South African regional emergency centre: Can infection control be improved to lower the risk of nosocomial transmission?

    Get PDF
    Background. George Regional Hospital (GRH) is a 272-bed regional referral hospital for the Eden and Central Karoo districts, Western Cape Province, South Africa. The perception among emergency centre (EC) staff is that a high burden of tuberculosis (TB) is being diagnosed and that infection control procedures are currently lacking, leading to a high risk of nosocomial transmission.Objectives. To establish the burden of pulmonary TB (PTB) presenting to GRH via the EC and audit current infection prevention and control practices, to quantify the risk of transmission of PTB in the EC and to establish whether infection control measures are inadequate.Methods. An audit of infection control based on the Centers for Disease Control audit tool for TB, analysis of results, and implementation of new infection control measures including a new standard operating procedure based on a set of triage criteria.Results. Implementation of new triage criteria and a standard operating procedure led to the longest length of stay of a patient with suspected TB in the EC being reduced by 40% (from 142 hours to 84 hours). The average time between seeing a doctor and leaving the EC for patients with suspected TB was reduced by 20% (from 20 hours 40 minutes to 16 hours 45 minutes).Conclusion. Simple measures implemented in the EC led to a significant reduction in the time patients with suspected or confirmed TB spent in the EC. This should lead to a reduced risk of nosocomial transmission of TB to both staff and patients

    Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Get PDF
    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies
    • 

    corecore