12,830 research outputs found
Toxicity of materials in fire situations: Laboratory data obtained at the University of San Francisco
Approximately 300 materials were evaluated using a specific set of test conditions. Materials tested included wood, fibers, fabrics and synthetic polymers. Data obtained using 10 different sets of test conditions are presented
Climbing the cosmic ladder with stellar twins
Distances to stars are key to revealing a three-dimensional view of the Milky
Way, yet their determination is a major challenge in astronomy. Whilst the
brightest nearby stars benefit from direct parallax measurements, fainter stars
are subject of indirect determinations with uncertainties exceeding 30%. We
present an alternative approach to measuring distances using
spectroscopically-identified twin stars. Given a star with known parallax, the
distance to its twin is assumed to be directly related to the difference in
their apparent magnitudes. We found 175 twin pairs from the ESO public HARPS
archives and report excellent agreement with Hipparcos parallaxes within 7.5%.
Most importantly, the accuracy of our results does not degrade with increasing
stellar distance. With the ongoing collection of high-resolution stellar
spectra, our method is well-suited to complement Gaia.Comment: published online on MNRA
PC1643+4631A,B: The Lyman-Alpha Forest at the Edge of Coherence
This is the first measurement and detection of coherence in the intergalactic
medium (IGM) at substantially high redshift (z~3.8) and on large physical
scales (~2.5 h^-1 Mpc). We perform the measurement by presenting new
observations from Keck LRIS of the high redshift quasar pair PC 1643+4631A, B
and their Ly-alpha absorber coincidences. This experiment extends multiple
sightline quasar absorber studies to higher redshift, higher opacity, larger
transverse separation, and into a regime where coherence across the IGM becomes
weak and difficult to detect. We fit 222 discrete Ly-alpha absorbers to
sightline A and 211 to sightline B. Relative to a Monte Carlo pairing test
(using symmetric, nearest neighbor matching) the data exhibit a 4sigma excess
of pairs at low velocity splitting (<150 km/s), thus detecting coherence on
transverse scales of ~2.5 h^-1 Mpc. We use spectra extracted from an SPH
simulation to analyze symmetric pair matching, transmission distributions as a
function of redshift and compute zero-lag cross-correlations to compare with
the quasar pair data. The simulations agree with the data with the same
strength (~4sigma) at similarly low velocity splitting above random chance
pairings. In cross-correlation tests, the simulations agree when the mean flux
(as a function of redshift) is assumed to follow the prescription given by
Kirkman et al. (2005). While the detection of flux correlation (measured
through coincident absorbers and cross-correlation amplitude) is only
marginally significant, the agreement between data and simulations is
encouraging for future work in which even better quality data will provide the
best insight into the overarching structure of the IGM and its understanding as
shown by SPH simulations.Comment: 15 pages, 11 figures; accepted for publication in Astronomical
Journa
Recommended from our members
'We're not like that': Crusader and Maverick Occupational Identity Resistance
This article explores the occupational identities of hairdressers and vehicle mechanics working in small and micro-firms. Using qualitative interview data from two UK cities, it examines the ways that workers expounded, reflected on and discursively reframed public perceptions of their occupation. A novel distinction between two types of identity reframing is proposed. âCrusadersâ are workers who reject characterisations as inappropriate for the occupation at large, whereas âmavericksâ accept that popular characterisations apply to other workers but differentiate themselves. The analysis identifies differences in occupational identity resistance strategies (crusader or maverick) when workers interact with two different publics: customers and trainees
Active Carbon and Oxygen Shell Burning Hydrodynamics
We have simulated 2.5 s of the late evolution of a star with full hydrodynamic behavior. We present the first simulations
of a multiple-shell burning epoch, including the concurrent evolution and
interaction of an oxygen and carbon burning shell. In addition, we have evolved
a 3D model of the oxygen burning shell to sufficiently long times (300 s) to
begin to assess the adequacy of the 2D approximation. We summarize striking new
results: (1) strong interactions occur between active carbon and oxygen burning
shells, (2) hydrodynamic wave motions in nonconvective regions, generated at
the convective-radiative boundaries, are energetically important in both 2D and
3D with important consequences for compositional mixing, and (3) a spectrum of
mixed p- and g-modes are unambiguously identified with corresponding adiabatic
waves in these computational domains. We find that 2D convective motions are
exaggerated relative to 3D because of vortex instability in 3D. We discuss the
implications for supernova progenitor evolution and symmetry breaking in core
collapse.Comment: 5 pages, 4 figures in emulateapj format. Accepted for publication in
ApJ Letters. High resolution figure version available at
http://spinach.as.arizona.ed
Young stars and dust in AFGL437: NICMOS/HST polarimetric imaging of an outflow source
We present near infrared broad band and polarimetric images of the compact
star forming cluster AFGL437 obtained with the NICMOS instrument aboard HST.
Our high resolution images reveal a well collimated bipolar reflection
nebulosity in the cluster and allow us to identify WK34 as the illuminating
source. The scattered light in the bipolar nebulosity centered on this source
is very highly polarized (up to 79%). Such high levels of polarization implies
a distribution of dust grains lacking large grains, contrary to the usual dust
models of dark clouds. We discuss the geometry of the dust distribution giving
rise to the bipolar reflection nebulosity and make mass estimates for the
underlying scattering material. We find that the most likely inclination of the
bipolar nebulosity, south lobe inclined towards Earth, is consistent with the
inclination of the large scale CO molecular outflow associated with the
cluster, strengthening the identification of WK34 as the source powering it.Comment: 26 pages, 10 figues. Accepted for publication in the Astrophysical
Journa
The Impact of Hydrodynamic Mixing on Supernova Progenitors
Recent multidimensional hydrodynamic simulations have demonstrated the
importance of hydrodynamic motions in the convective boundary and radiative
regions of stars to transport of energy, momentum, and composition. The impact
of these processes increases with stellar mass. Stellar models which
approximate this physics have been tested on several classes of observational
problems. In this paper we examine the implications of the improved treatment
on supernova progenitors. The improved models predict substantially different
interior structures. We present pre-supernova conditions and simple explosion
calculations from stellar models with and without the improved mixing treatment
at 23 solar masses. The results differ substantially.Comment: 12 pages, 2 figures, accepted for publication in the Astrophysical
Journal Letter
Near-Infrared MOSFIRE Spectra of Dusty Star-Forming Galaxies at 0.2<z<4
We present near-infrared and optical spectroscopic observations of a sample
of 450m and 850m-selected dusty star-forming galaxies (DSFGs)
identified in a 400 arcmin area in the COSMOS field. Thirty-one sources of
the 102 targets were spectroscopically confirmed at , identified
primarily in the near-infrared with Keck MOSFIRE and some in the optical with
Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high
rest-frame optical obscuration in our targets and limited sensitivity to
certain redshift ranges. The high-quality photometric redshifts available in
the COSMOS field allow us to test the robustness of photometric redshifts for
DSFGs. We find a subset (11/31%) of DSFGs with inaccurate () or non-existent photometric redshifts; these have very distinct
spectral energy distributions from the remaining DSFGs, suggesting a decoupling
of highly obscured and unobscured components. We present a composite rest-frame
4300--7300\AA\ spectrum for DSFGs, and find evidence of 20030 km s
gas outflows. Nebular line emission for a sub-sample of our detections indicate
that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more
so than typical mass or UV-selected high-z galaxies. We also confirm the
extreme level of dust obscuration in DSFGs, measuring very high Balmer
decrements, and very high ratios of IR to UV and IR to H luminosities.
This work demonstrates the need to broaden the use of wide bandwidth technology
in the millimeter to the spectroscopic confirmations of large samples of high-z
DSFGs, as the difficulty in confirming such sources at optical/near-infrared
wavelengths is exceedingly challenging given their obscuration.Comment: 14 pages, 13 figures, ApJ accepted. Composite DSFG Halpha spectrum
available at www.as.utexas.edu/~cmcasey/downloads.htm
Archaeobotanical evidence for pearl millet (Pennisetum glaucum) in sub-Saharan West Africa
The remains of pearl millet (Pennisetum glaucum) dating to 3460±200 and 2960±370 BP have been recovered at the archaeological site of Birimi, northern Ghana, associated with the Kintampo cultural complex. This finding represents the earliest known occurrence of pearl millet in sub-Saharan Africa. Results indicate that Kintampo peoples developed effective subsistence adaptations to savannas as well as tropical forest habitat
- âŠ