We have simulated 2.5×103 s of the late evolution of a 23M⊙ star with full hydrodynamic behavior. We present the first simulations
of a multiple-shell burning epoch, including the concurrent evolution and
interaction of an oxygen and carbon burning shell. In addition, we have evolved
a 3D model of the oxygen burning shell to sufficiently long times (300 s) to
begin to assess the adequacy of the 2D approximation. We summarize striking new
results: (1) strong interactions occur between active carbon and oxygen burning
shells, (2) hydrodynamic wave motions in nonconvective regions, generated at
the convective-radiative boundaries, are energetically important in both 2D and
3D with important consequences for compositional mixing, and (3) a spectrum of
mixed p- and g-modes are unambiguously identified with corresponding adiabatic
waves in these computational domains. We find that 2D convective motions are
exaggerated relative to 3D because of vortex instability in 3D. We discuss the
implications for supernova progenitor evolution and symmetry breaking in core
collapse.Comment: 5 pages, 4 figures in emulateapj format. Accepted for publication in
ApJ Letters. High resolution figure version available at
http://spinach.as.arizona.ed