220 research outputs found

    Gamma-ray burst contributions to constraining the evolution of dark energy

    Full text link
    We explore the gamma-ray bursts' (GRBs') contributions in constraining the dark energy equation of state (EOS) at high (1.8<z<71.8 < z < 7) and at middle redshifts (0.5<z<1.80.5 < z < 1.8) and estimate how many GRBs are needed to get substantial constraints at high redshifts. We estimate the constraints with mock GRBs and mock type Ia supernovae (SNe Ia) for comparisons. When constraining the dark energy EOS in a certain redshift range, we allow the dark energy EOS parameter to vary only in that redshift bin and fix EOS parameters elsewhere to -1. We find that it is difficult to constrain the dark energy EOS beyond the redshifts of SNe Ia with GRBs unless some new luminosity relations for GRBs with smaller scatters are discovered. However, at middle redshifts, GRBs have comparable contributions with SNe Ia in constraining the dark energy EOS.Comment: 3 pages, 5 figures. Published in Astronomy and Astrophysics. Corrected referenc

    HI study of the warped spiral galaxy NGC5055: a disk/dark matter halo offset?

    Get PDF
    We present a study of the HI distribution and dynamics of the nearby spiral galaxy NGC5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R_25, and shows a pronounced warp that starts at the end of the bright optical disk (R_25= 11.6 kpc). This very extended warp has large-scale symmetry, which along with the rotation period of its outer parts (~1.5 Gyr at 40 kpc), suggests a long-lived phenomenon. The rotation curve rises steeply in the central parts up to the maximum velocity (v_max ~ 206 km/s). Beyond the bright stellar disk (R_25), it shows a decline of about 25 km/s and then remains flat out to the last measured point. The standard analysis with luminous and dark matter components shows the dynamical importance of the disk. The best fit to the rotation curve is obtained with a ``maximum disk''. Less satisfactory fits with lighter disks help to set a firm lower limit of 1.4 to the mass-to-light ratio in F band of the disk. Such a ``minimum disk'' contributes about 60% of the observed maximum rotational velocity. NGC5055 shows remarkable overall regularity and symmetry. A mild lopsidedness is noticeable, however, both in the distribution and kinematics of the gas. The tilted ring analysis of the velocity field led us to adopt different values for the kinematical centre and for the systemic velocity for the inner and the outer parts of the system. This has produced a remarkable result: the kinematical and geometrical asymmetries disappear, both at the same time. These results point at two different dynamical regimes: an inner region dominated by the stellar disk and an outer one, dominated by a dark matter halo offset with respect to the disk.Comment: Accepted for publication in A&A. Minor correction

    Accurate Determination of the Mass Distribution in Spiral Galaxies: II. Testing the Shape of Dark Halos

    Full text link
    New high resolution CFHT Fabry-Perot data, combined with published VLA 21 cm observations are used to determine the mass distribution of NGC 3109 and IC 2574. The multi-wavelength rotation curves allow to test with confidence different dark halo functional forms from the pseudo-isothermal sphere to some popular halo distributions motivated by N-body simulations. It appears that density distribution with an inner logarithmic slope <= -1 are very hard to reconcile with rotation curves of late type spirals. Modified Newtonian Dynamics (MOND) is also considered as a potential solution to missing mass and tested the same way. The new higher resolution data show that MOND can reproduce in details the rotation curve of IC 2574 but confirm its difficulty to fit the kinematics of NGC 3109.Comment: 28 pages, accepted by AJ. New HI profile increases the compatibility of NGC 3109 rotation curve with MON

    A High-Resolution Study of the HI Content of Local Group Dwarf Irregular Galaxy WLM

    Get PDF
    Dwarf irregular galaxies are unique laboratories for studying the interaction between stars and the interstellar medium in low mass environments. We present the highest spatial resolution observations to date of the neutral hydrogen content of the Local Group dwarf irregular galaxy WLM. We find that WLM's neutral hydrogen distribution is typical for a galaxy of its type and size and derive an HI mass of 6.3e7 Msun for WLM. In addition, we derive an HI extent for WLM of 30 arcmin, which is much less than the 45 arcmin extent found by Huchtmeier, Seiradakis, and Materne (1981). We show that the broken ring of high column density neutral hydrogen surrounding the center of WLM is likely the result of star formation propagating out from the center of the galaxy. The young stars and Ha emission in this galaxy are mostly correlated with the high column density neutral hydrogen. The gap in the central ring is the result of star formation in that region using up, blowing out, or ionizing all of the neutral hydrogen. Like many late-type galaxies, WLM's velocity field is asymmetric with the approaching (northern) side appearing to be warped and a steeper velocity gradient for the approaching side than for the receding side in the inner region of the galaxy. We derive a dynamical mass for WLM of 2.16e9 Msun.Comment: 38 pages, 15 figures, 5 tables, accepted by AJ, high resolution version at http://www.astro.wisc.edu/~kepley/kepley_wlm.p

    Dual targeting of ptp1b and aldose reductase with marine drug phosphoeleganin: A promising strategy for treatment of type 2 diabetes

    Get PDF
    An in-depth study on the inhibitory mechanism on protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) enzymes, including analysis of the insulin signalling pathway, of phosphoeleganin, a marine-derived phosphorylated polyketide, was achieved. Phosphoeleganin was demonstrated to inhibit both enzymes, acting respectively as a pure non-competitive inhibitor of PTP1B and a mixed-type inhibitor of AR. In addition, in silico docking analyses to evaluate the interaction mode of phosphoeleganin with both enzymes were performed. Interestingly, this study showed that phosphoeleganin is the first example of a dual inhibitor polyketide extracted from a marine invertebrate, and it could be used as a versatile scaffold structure for the synthesis of new designed multiple ligands

    Star--forming galaxies at intermediate redshifts: morphology, ages and sizes

    Full text link
    We present the analysis of the deepest near-UV image obtained with HST using the WFPC2(F300W) as part of the parallel observations of the Ultra Deep Field campaign. The U-band 10sigma limiting magnitude measured over 0.2 arcsec square is m(AB)=27.5 which is 0.5 magnitudes deeper than that in the HDF-North. We matched the U-band catalog with those in the ACS images taken during the GOODS observations of the CDF-South and obtained photometric-z for 306 matched objects. We find that the UV-selected galaxies span all the major morphological types at 0.2<z_phot<1.2. However, disks are more common at lower redshifts, 0.2<z_phot<0.8. Higher-z objects (0.7<z_phot<1.2) are on average bluer than lower-z and have spectral type typical of starbursts. Their morphologies are compact, peculiar or low surface brightness galaxies. The average half-light radius (rest-frame 1200--1800 A) of the UV-selected galaxies at 0.66<z_ phot<1.5 is 0.26 +- 0.01 arcsec (2.07 +- 0.08 kpc). The UV-selected galaxies are on average fainter (M_B=-18.43+-0.13) than Lyman Break Galaxies (M_B=-23+-1). Our sample includes early-type galaxies that are presumably massive and forming stars only in their cores, as well as starburst-type systems that are more similar to the LBGs, although much less luminous. This implies that even the starbursts in our sample are either much less massive than LBGs or are forming stars at a much lower rate or both. The low surface brightness galaxies have no overlap with the LBGs and form an interesting new class of their own.Comment: 22 pages, 15 figures. Astronomical Journal Accepte

    Extra-planar gas in the spiral galaxy NGC 4559

    Get PDF
    We present 21-cm line observations of the spiral galaxy NGC 4559, made with the Westerbork Synthesis Radio Telescope. We have used them to study the HI distribution and kinematics, the relative amount and distribution of luminous and dark matter in this galaxy and, in particular, the presence of extra-planar gas. Our data do reveal the presence of such a component, in the form of a thick disk, with a mass of 5.9 x 10^8 Mo (one tenth of the total HI mass) and a mean rotation velocity 25-50 km/s lower than that of the thin disk. The extra-planar gas may be the result of galactic fountains but accretion from the IGM cannot be ruled out. With this study we confirm that lagging, thick HI layers are likely to be common in spiral galaxies.Comment: 17 pages, 10 figures. Accepted for publication in A&

    HST Measurements of the Expansion of NGC 6543: Parallax Distance and Nebular Evolution

    Get PDF
    The optical expansion parallax of NGC 6543 has been detected and measured using two epochs of HST images separated by a time baseline of only three years. We have utilized three separate methods of deriving the angular expansion of bright fiducials, the results of which are in excellent agreement. We combine our angular expansion estimates with spectroscopically obtained expansion velocities to derive a distance to NGC 6543 of 1001±\pm269 pc. The deduced kinematic age of the inner bright core of the nebula is 1039±\pm259 years; however, the kinematic age of the polar caps that surround the core is larger - perhaps the result of deceleration or earlier mass ejection. The morphology and expansion patterns of NGC 6543 provide insight into a complex history of axisymmetric, interacting stellar mass ejections.Comment: Accepted for publication in AJ. 18 pages. 6 figure

    Properties of Dark Matter Haloes

    Full text link
    An overview is presented of the main properties of dark matter haloes, as we know them from observations, essentially from rotation curves around spiral and dwarf galaxies. Detailed rotation curves are now known for more than a thousand galaxies, revealing that they are not so flat in the outer parts, but rising for late-types, and falling for early-types. A well established result now is that most bright galaxies are not dominated by dark matter inside their optical disks. Only for dwarfs and LSB (Low Surface Brightness galaxies) dark matter plays a dominant role in the visible regions. The 3D-shape of haloes are investigated through several methods, that will be discussed: polar rings, flaring of HI planes, X-ray isophotes. It is not yet possible with rotation curves to know how far haloes extend, but tentatives have been made. It will be shown that the dark matter appears to be coupled to the gas in spirals and dwarfs, suggesting that dark baryons could play the major role in rotation curves. Theories proposing to replace the non-baryonic dark matter by a different dynamical or gravity law, such as MOND, have to take into account the dark baryons, especially since their spatial distribution is likely to be quite different from the visible matter.Comment: 20 pages, 8 figures, submitted to NewA Reviews, review given at MOND workshop, Paris, October 200

    Does the Milky Way have a Maximal Disk?

    Get PDF
    The Milky Way is often considered to be the best example of a spiral for which the dark matter not only dominates the outer kinematics, but also plays a major dynamical role in the inner galaxy: the Galactic disk is therefore said to be ``sub-maximal.'' This conclusion is important to the understanding of the evolution of galaxies and the viability of particular dark matter models. The Galactic evidence rests on a number of structural and kinematic measurements, many of which have recently been revised. The new constraints indicate not only that the Galaxy is a more typical member of its class (Sb-Sc spirals) than previously thought, but also require a re-examination of the question of whether or not the Milky Way disk is maximal. By applying to the Milky Way the same definition of ``maximal disk'' that is applied to external galaxies, it is shown that the new observational constraints are consistent with a Galactic maximal disk of reasonable M/LM/L. In particular, the local disk column can be substantially less than the oft-quoted required \Sigma_{\odot} \approx 100 \msolar pc^{-2} - as low as 40 \msolar pc^{-2} in the extreme case - and still be maximal, in the sense that the dark halo provides negligible rotation support in the inner Galaxy. This result has possible implications for any conclusion that rests on assumptions about the potentials of the Galactic disk or dark halo, and in particular for the interpretation of microlensing results along both LMC and bulge lines of sight.Comment: Accepted for publication in The Astrophysical Journal. 23 Latex-generated pages, one (new) table, three figures (two new). A few additions to the bibliography, an expanded discussion, and slight quantitative changes, none of which affect the conclusion
    • …
    corecore