17 research outputs found

    Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits

    Get PDF
    The most recent efforts to provide remote sensing (RS) estimates of plant function rely on the combination of Radiative Transfer Models (RTM) and Soil-Vegetation-Atmosphere Transfer (SVAT) models, such as the Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) model. In this work we used ground spectroradiometric and chamber-based CO2 flux measurements in a nutrient manipulated Mediterranean grassland in order to: 1) develop a multiple-constraint inversion approach of SCOPE able to retrieve vegetation biochemical, structural as well as key functional traits, such as chlorophyll concentration (Cab), leaf area index (LAI), maximum carboxylation rate (Vcmax) and the Ball-Berry sensitivity parameter (m); and 2) compare the potential of the of gross primary production (GPP) and sun-induced fluorescence (SIF), together with up-welling Thermal Infrared (TIR) radiance and optical reflectance factors (RF), to estimate such parameters. The performance of the proposed inversion method as well as of the different sets of constraints was assessed with contemporary measurements of water and heat fluxes and leaf nitrogen content, using pattern-oriented model evaluation. The multiple-constraint inversion approach proposed together with the combination of optical RF and diel GPP and TIR data provided reliable estimates of parameters, and improved predicted water and heat fluxes. The addition of SIF to this scheme slightly improved the estimation of m. Parameter estimates were coherent with the variability imposed by the fertilization and the seasonality of the grassland. Results revealed that fertilization had an impact on Vcmax, while no significant differences were found for m. The combination of RF, SIF and diel TIR data weakly constrained functional traits. Approaches not including GPP failed to estimate LAI; however GPP overestimated Cab in the dry period. These problems might be related to the presence of high fractions of senescent leaves in the grassland. The proposed inversion approach together with pattern-oriented model evaluation open new perspectives for the retrieval of plant functional traits relevant for land surface models, and can be utilized at various research sites where hyperspectral remote sensing imagery and eddy covariance flux measurements are simultaneously taken

    How nitrogen and phosphorus availability change water use efficiency in a Mediterranean savanna ecosystem

    Get PDF
    Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might lead to nutrient deficiency or alter ecosystem functioning in various ways. In this study, we present 6 years (2014–2020) of flux-, plant-, and remote sensing data from a large-scale nutrient manipulation experiment conducted in a Mediterranean savanna-type ecosystem with an emphasis on the effects of N and P treatments on ecosystem-scale water-use efficiency (WUE) and related mechanisms. Two plots were fertilized with N (NT, 16.9 Ha) and N + P (NPT, 21.5 Ha), and a third unfertilized plot served as a control (CT). Fertilization had a strong impact on leaf nutrient stoichiometry only within the herbaceous layer with increased leaf N in both fertilized treatments and increased leaf P in NPT. Following fertilization, WUE in NT and NPT increased during the peak of growing season. While gross primary productivity similarly increased in NT and NPT, transpiration and surface conductance increased more in NT than in NPT. The results show that the NPT plot with higher nutrient availability, but more balanced N:P leaf stoichiometry had the highest WUE. On average, higher N availability resulted in a 40% increased leaf area index (LAI) in both fertilized treatments in the spring. Increased LAI reduced aerodynamic conductance and thus evaporation at both fertilized plots in the spring. Despite reduced evaporation, annual evapotranspiration increased by 10% (48.6 ± 28.3 kg H2O m−2), in the NT plot, while NPT remained similar to CT (−1%, −6.7 ± 12.2 kgH2O m−2). Potential causes for increased transpiration at NT could be increased root biomass and thus higher water uptake or rhizosphere priming to increase P-mobilization through microbes. The annual net ecosystem exchange shifted from a carbon source in CT (75.0 ± 20.6 gC m−2) to carbon-neutral in both fertilized treatments [−7.0 ± 18.5 gC m−2 (NT) 0.4 ± 22.6 gC m−2 (NPT)]. Our results show, that the N:P stoichiometric imbalance, resulting from N addition (without P), increases the WUE less than the addition of N + P, due to the strong increase in transpiration at NT, which indicates the importance of a balanced N and P content for WUE

    Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease

    Get PDF
    BACKGROUND: Acute graft-versus-host disease (GVHD) remains a major limitation of allogeneic stem-cell transplantation; not all patients have a response to standard glucocorticoid treatment. In a phase 2 trial, ruxolitinib, a selective Janus kinase (JAK1 and JAK2) inhibitor, showed potential efficacy in patients with glucocorticoid-refractory acute GVHD. METHODS: We conducted a multicenter, randomized, open-label, phase 3 trial comparing the efficacy and safety of oral ruxolitinib (10 mg twice daily) with the investigator's choice of therapy from a list of nine commonly used options (control) in patients 12 years of age or older who had glucocorticoid-refractory acute GVHD after allogeneic stem-cell transplantation. The primary end point was overall response (complete response or partial response) at day 28. The key secondary end point was durable overall response at day 56. RESULTS: A total of 309 patients underwent randomization; 154 patients were assigned to the ruxolitinib group and 155 to the control group. Overall response at day 28 was higher in the ruxolitinib group than in the control group (62% [96 patients] vs. 39% [61]; odds ratio, 2.64; 95% confidence interval [CI], 1.65 to 4.22; P<0.001). Durable overall response at day 56 was higher in the ruxolitinib group than in the control group (40% [61 patients] vs. 22% [34]; odds ratio, 2.38; 95% CI, 1.43 to 3.94; P<0.001). The estimated cumulative incidence of loss of response at 6 months was 10% in the ruxolitinib group and 39% in the control group. The median failure-free survival was considerably longer with ruxolitinib than with control (5.0 months vs. 1.0 month; hazard ratio for relapse or progression of hematologic disease, non-relapse-related death, or addition of new systemic therapy for acute GVHD, 0.46; 95% CI, 0.35 to 0.60). The median overall survival was 11.1 months in the ruxolitinib group and 6.5 months in the control group (hazard ratio for death, 0.83; 95% CI, 0.60 to 1.15). The most common adverse events up to day 28 were thrombocytopenia (in 50 of 152 patients [33%] in the ruxolitinib group and 27 of 150 [18%] in the control group), anemia (in 46 [30%] and 42 [28%], respectively), and cytomegalovirus infection (in 39 [26%] and 31 [21%]). CONCLUSIONS: Ruxolitinib therapy led to significant improvements in efficacy outcomes, with a higher incidence of thrombocytopenia, the most frequent toxic effect, than that observed with control therapy

    senSCOPE: Modeling mixed canopies combining green and brown senesced leaves. Evaluation in a Mediterranean Grassland

    Get PDF
    The coupling of radiative transfer, energy balance, and photosynthesis models has brought new opportunities to characterize vegetation functional properties from space. However, these models do not accurately represent processes in ecosystems characterized by mixtures of green vegetation and senescent plant material (SPM), in particular grasslands. These inaccuracies limit the retrieval of vegetation biophysical and functional properties. Green and senesced plants feature contrasting spectral properties and carry out different functions that current coupled models do not represent separately. Besides, senescent pigments' absorption features change as SPM decomposes, and neither is this process well parameterized in radiative transfer models. This manuscript aims at overcoming these limitations. On the one hand, we have developed senSCOPE, a version of the Soil-Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) that separately represents light interaction and physiology of green and senesced leaves. On the other, we have characterized new specific absorption coefficients of senescent pigments (K s) from optical measurements of SPM from a Mediterranean grassland. Sensitivity analyses revealed that compared to SCOPE, senSCOPE 1) predicts variables that respond more linearly to the faction of green leaf area; and 2) keeps high levels of absorbed photosynthetically active radiation in the green leaves, which leads to significant differences in leaf photosynthesis, non-photochemical quenching, and transpiration. Moreover, we compared SCOPE vs. senSCOPE's capability to provide estimates of functional and biophysical parameters of vegetation. We assimilated different combinations of reflectance factors (R), chlorophyll sun-induced fluorescence radiance in the O 2-A band (F 760), gross primary production (GPP), and thermal radiance (L t) measured in a Mediterranean grassland. Besides, we compared the role of three different sets of K s coefficients in the inversion of senSCOPE, two estimated from SPM. The performance of the inversions was assessed using field data and a pattern-oriented model evaluation approach. Unlike SCOPE, senSCOPE provided unbiased estimates of chlorophyll content (C ab) during the dry season. The use of SPM-specific K s improved the representation of R in the near-infrared wavelengths; and, consequently, the estimation of leaf area index (LAI). Compared with field LAI, the coefficient of determination R 2 increased from ~0.4 to ~0.6, depending on the inversion constraints. Compared with SCOPE, the new model and coefficients together reduced the root mean squared error between observed and modeled R (~40%), F 760 (~30%), and GPP (~5%). Both models failed to represent L t; in this case, senSCOPE featured larger uncertainties. The modeling approach we propose improves the simulation and retrieval of vegetation properties and function in grasslands. Further work is needed to test the applicability of senSCOPE in different ecosystems, improve the simulation of the thermal spectral domain, and better characterize the optical parameters of SPM. To do so, new databases of SPM optical and biophysical properties should be produced

    How Nitrogen and Phosphorus Availability Change Water Use Efficiency in a Mediterranean Savanna Ecosystem

    No full text
    Nutrient availability, especially of nitrogen (N) and phosphorus (P), is of major importance for every organism and at a larger scale for ecosystem functioning and productivity. Changes in nutrient availability and potential stoichiometric imbalance due to anthropogenic nitrogen deposition might lead to nutrient deficiency or alter ecosystem functioning in various ways. In this study, we present 6 years (2014–2020) of flux-, plant-, and remote sensing data from a large-scale nutrient manipulation experiment conducted in a Mediterranean savanna-type ecosystem with an emphasis on the effects of N and P treatments on ecosystem-scale water-use efficiency (WUE) and related mechanisms. Two plots were fertilized with N (NT, 16.9 Ha) and N + P (NPT, 21.5 Ha), and a third unfertilized plot served as a control (CT). Fertilization had a strong impact on leaf nutrient stoichiometry only within the herbaceous layer with increased leaf N in both fertilized treatments and increased leaf P in NPT. Following fertilization, WUE in NT and NPT increased during the peak of growing season. While gross primary productivity similarly increased in NT and NPT, transpiration and surface conductance increased more in NT than in NPT. The results show that the NPT plot with higher nutrient availability, but more balanced N:P leaf stoichiometry had the highest WUE. On average, higher N availability resulted in a 40% increased leaf area index (LAI) in both fertilized treatments in the spring. Increased LAI reduced aerodynamic conductance and thus evaporation at both fertilized plots in the spring. Despite reduced evaporation, annual evapotranspiration increased by 10% (48.6 ± 28.3 kg H2O m−2), in the NT plot, while NPT remained similar to CT (−1%, −6.7 ± 12.2 kgH2O m−2). Potential causes for increased transpiration at NT could be increased root biomass and thus higher water uptake or rhizosphere priming to increase P-mobilization through microbes. The annual net ecosystem exchange shifted from a carbon source in CT (75.0 ± 20.6 gC m−2) to carbon-neutral in both fertilized treatments [−7.0 ± 18.5 gC m−2 (NT) 0.4 ± 22.6 gC m−2 (NPT)]. Our results show, that the N:P stoichiometric imbalance, resulting from N addition (without P), increases the WUE less than the addition of N + P, due to the strong increase in transpiration at NT, which indicates the importance of a balanced N and P content for WUE
    corecore