
Abstract  High temporal resolution measurements of solar-induced chlorophyll fluorescence (F) 
and the Photochemical Reflectance Index (PRI) encode vegetation functioning. However, these signals 
are modulated by time-dependent processes. We tested the applicability of the Singular Spectrum 
Analysis (SSA) for disentangling fast components (physiology-driven) and slow components (controlled 
by structural and biochemical properties) from PRI, far-red F (F760), and far-red apparent fluorescence 
yield (Fy∗760). The proof of concept was developed on spectral and flux time series simulated with the Soil 
Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model. This allowed the evaluation 
of SSA decomposition against variables that are independent of physiology or are modified by it. Slow 
SSA-decomposed components of PRI and Fy∗760 showed high correlations with the reference variables 
(R2 = 0.97 and 0.96, respectively). Fast SSA-decomposed components of PRI and Fy∗760 were better related 
to the physiological reference variables than the original signals during periods when leaf area index 
(LAI) was above 1 m2 m−2. The method was also successfully applied to predict light-use efficiency (LUE) 
from the fast SSA-decomposed components of PRI (R2 = 0.70) and Fy∗760 (R2 = 0.68) when discarding data 
modeled with LAI < 1 m2 m−2 and short-wave radiation Rin < 250 W m−2. The method was then tested on 
data acquired in a Mediterranean grassland. In this case, the fast SSA-decomposed component of apparent 
LUE∗ showed a stronger correlation with the fast SSA-decomposed component of Fy∗760 (R2 = 0.42) than 
with original Fy∗760 (R2 = 0.01). SSA-based approach is a promising tool for decoupling physiological 
information from measurements acquired with automated proximal sensing systems.

Plain Language Summary  A fraction of the solar light, which is absorbed by leaves but is not 
used during photosynthesis, is released through heat or as chlorophyll fluorescence (F), a small emission 
of energy. Recently, it became possible to indirectly estimate the heat and F by measuring the solar 
light incoming and reflected from leaves using high-resolution optical instruments. Heat release can be 
monitored with the Photochemical Reflectance Index (PRI). While both PRI and F are theoretically linked 
to the processes associated with photosynthesis, there is a need to remove the disturbing effects from these 
signals. We tested whether the Singular Spectrum Analysis (SSA) method can identify at which temporal 
scale (e.g., seasonal, diurnal) physiological processes (i.e., photosynthesis) and vegetation biophysical 
changes (e.g., phenology) drive variability in PRI and F. We applied the method on artificial time series 
of PRI and F simulated with a model (Soil Canopy Observation of Photochemistry and Energy fluxes 
[SCOPE]) and found that SSA can successfully split these signals into several components recognized as 
slow (seasonally changing structure and pigments) and fast (physiological response to stress) processes. 
The method was also tested on time series collected in a Mediterranean grassland, yielding promising 
results in detecting physiologically driven changes in apparent fluorescence yield (F normalized by 
photosynthetically active radiation).
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Key Points:
•	 �Singular Spectrum Analysis (SSA) 

allowed to separate slow and fast 
temporal dynamics in time series of 
the Photochemical Reflectance Index 
and apparent fluorescence yield

•	 �SSA successfully extracted the 
effect of de-epoxidation state of 
the xanthophyll cycle on leaf 
absorptance in time series simulated 
with Soil Canopy Observation of 
Photochemistry and Energy fluxes 
model

•	 �SSA allows decoupling long-term 
biophysical and rapid physiological 
changes in high temporal resolution 
spectral measurements
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1.  Introduction
Remote and proximal sensing of vegetation are powerful tools for the exploitation of subtle signals related 
to plant physiology and photosynthesis. During the last two decades, the interest of the remote sensing com-
munity toward solar-induced chlorophyll fluorescence (F) and the Photochemical Reflectance Index (PRI) 
(Gamon et al., 1992) has increased due to evidence of the close relationship between plant physiological 
properties and these optical signals (Garbulsky et al., 2011; Meroni et al., 2009; Mohammed et al., 2019). 
A combination of different processes maintains plants' ability to deal with varying environmental condi-
tions and stress factors. Under optimal light conditions and adequate water and nutrients supply, photo-
chemical reactions, including CO2 assimilation and electron transport, occur at high efficiency. However, 
when absorbed solar energy exceeds photosynthetic capacity, it risks damaging the reaction centers of the 
photosystems and must be emitted as F in the 650–850 nm spectral range or dissipated as heat as part of 
the non-photochemical quenching (NPQ) (Demmig-Adams & Adams, 1992). Since all three mechanisms 
(carbon-fixation, F and NPQ) compete for the same absorbed energy, the characterization of both F and 
NPQ might enable accurate inference of photosynthesis from optical signals (Frankenberg & Berry, 2018; 
Porcar-Castell et al., 2014). One of the NPQ thermal dissipation mechanisms is the de-epoxidation of the 
xanthophyll cycle pigments (Demmig-Adams, 1990; Niyogi et al., 1997). The excess energy leads to the in-
terconversion of the xanthophyll cycle pigments, violaxanthin to antheraxanthin and then to zeaxanthin, 
providing a sink for this energy (Demmig-Adams & Adams, 1996; Pfündel & Bilger, 1994; Yamamoto, 1979). 
This process is quickly reversible, and zeaxanthin is converted back to violaxanthin under low light condi-
tions and during the night. These conversions result in changes of leaf absorptance around 531 nm, which 
are detectable with PRI (Gamon et al., 1992; Garbulsky et al., 2011).

Based on the conceptual light-use efficiency framework introduced in Monteith  (1972), gross primary 
production (GPP) is the product of the photosynthetically active radiation (PAR) absorbed by chlorophyll 
(aPARCab) and the efficiency with which absorbed light can be used to fix atmospheric CO2 (light-use effi-
ciency, LUE):

 Cab ,GPP aPAR LUE� (1)

CabaPAR  is often expressed as a fraction of incoming PAR (faPARCab), which represents a vegetation property 
independent of the magnitude of the incoming PAR.

Numerous studies have shown that F and PRI measured from a variety of tower-based (e.g., Cogliati 
et al., 2015; Kim et al., 2021; Wieneke et al., 2018; Xu et al., 2021), airborne (e.g., Middleton et al., 2017; 
Rascher et al., 2015; Rossini et al., 2015; Siegmann et al., 2021; Tagliabue et al., 2019), and spaceborne plat-
forms (e.g., Middleton et al., 2016; Sun et al., 2018; Wang et al., 2020; Zhang et al., 2020) can successfully 
track variations in GPP and/or LUE. However, canopy-scale F and PRI are not exclusively driven by plant 
physiology. Structural and biochemical properties of vegetation varying at different timescales also affect F 
and PRI signals remotely observed. Phenological changes in pigment pools and canopy structure (e.g., leaf 
area index, LAI) induce a slow variation of these signals. Faster changes take place at diurnal scales driven 
by directional effects (sun position and illumination conditions) and physiological responses to environ-
mental and stress conditions (e.g., high vapor pressure deficit, VPD).

At seasonal scale, PRI is sensitive to leaf properties, especially to slow pigment pool modifications respond-
ing to environmental factors such as sun exposure, aging, or chronic stress (Filella et al., 2009). These irre-
versible changes are termed constitutive components of PRI (Gamon & Berry, 2012). Facultative PRI com-
ponents lead to fast and reversible physiological variations related to the de-epoxidation state (DEPS) of 
xanthophylls in response to illumination intensity (Demmig-Adams & Adams, 1992).

Following the adaption of the LUE model proposed by Lee et al. (2013) top of the canopy (TOC) F signal 
can be defined as:

  Cab f esc,F aPAR f� (2)

where ϕf is the physiological F emission yield and fesc is the fraction of all F photons that escape from the 
canopy. Both faPARCab and fesc are controlled by canopy structure and leaf biochemical properties (Martini 
et al., 2019; Migliavacca et al., 2017), which usually vary at seasonal timescales. Fluorescence yield ϕf, in 
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turn, directly responds to the energy partitioning in the photosynthetic machinery. Therefore, it represents 
a short-term variability (diurnal and sub-diurnal) driven by the modulation of the physiological status of 
plants.

The recent development of coupled photosynthesis and radiative transfer models (RTMs) (e.g., the Soil Can-
opy Observation of Photochemistry and Energy fluxes, SCOPE (van der Tol et al., 2009)), able to simulate 
physiologically driven F and PRI (Vilfan et al., 2018), allowed a better characterization of the physiological 
and biophysical components of these optical signals. However, the separation of the physiological and radi-
ative sources of variability in long-term measurements of reflectance and F is still a challenge. This knowl-
edge gap hampers the full exploitation of long-term data series collected by unattended spectroradiometric 
systems, such as those described in Porcar-Castell et al. (2015).

Alternatively, statistical approaches have been successfully used to decompose overlapping signals. For ex-
ample, the Singular Spectrum Analysis (SSA) is a comprehensive methodology originally established by 
Broomhead and King (1986) and Fraedrich (1986) and later developed by Ghil et al. (2002) and Golyandina 
et  al.  (2001). SSA is a powerful tool for decomposition, reconstruction, and forecasting of climatic time 
series (Ghil et al., 2002; Plaut et al., 1995; Yiou et al., 1996). Also, SSA was successfully used for the char-
acterization of the dynamics of eddy covariance (EC) ecosystem-atmosphere fluxes (Mahecha et al., 2007; 
Mahecha, Reichstein, Jung, et al., 2010; Wang et al., 2012) and for the evaluation of terrestrial biosphere and 
semi-empirical model performances at different timescales (Mahecha, Reichstein, Carvalhais, et al., 2010; 
Migliavacca et al., 2015). The main idea behind SSA is that time series can be described as a sum of super-
imposed subsignals, which can be extracted based on their characteristic scales of variability (Mahecha, Re-
ichstein, Jung, et al., 2010). Unlike other methods, one-dimensional SSA is non-parametric, and therefore, 
it does not require prior information about the number and/or frequencies of periodicities, nor a model for 
trend (Golyandina et al., 2018).

In this work, we extend the use of SSA to decompose time series of optical signals related to the photosyn-
thetic activity of plants, such as PRI, far-red fluorescence (F760), and far-red apparent fluorescence yield 
(Fy∗760 = F760/PAR). We hypothesize that SSA can coherently decouple fast and slow components of the 
variability of these signals. We test this hypothesis by evaluating to what extent SSA fast components can 
be attributed to vegetation's physiological responses and SSA slow components to seasonal variations of 
structural and biochemical properties. We also evaluate the potential of SSA fast components to predict 
NPQ and LUE. First, we tested SSA on time series of half-hourly data simulated with the state-of-the-art 
model SCOPE. Then, we applied SSA to automated proximal sensing and EC time series acquired in a Med-
iterranean grassland.

2.  Methods
2.1.  SCOPE Simulations

SCOPE version 1.73 was used to simulate one year of TOC reflectance factors (R), F, and fluxes at half-hour-
ly time steps (Biriukova et al., 2021). Variations of leaf absorptance between 500 and 570 nm induced by 
the inter-conversions of the xanthophyll cycle pigments were simulated by the leaf RTM Fluspect (Flus-
pect-CX) (Vilfan et al., 2018). Fluorescence radiance was simulated by SCOPE using the fluorescence emis-
sion spectra characterized from the FluoWat leaf clip measurements (fluorescence of photosystems I and 
II are not separated, SCOPE parameter “calc_PSI” = 0) (Vilfan et al., 2016) and an empirical fluorescence 
model (van der Tol et al., 2014) (SCOPE parameter “Fluorescence_model” = 0).

The distribution of absorbed light into competitive pathways is controlled by the rate coefficients (K), which 
express the probability of the different fates of the excitations (van der Tol et al., 2014). The rate constant for 
constitutive thermal dissipation that is present in dark-adapted plants (Kd) was defined as a function of leaf 
temperature (T) as Kd = max (0.8738, 0.0301 · (T − 273.15) + 0.0773). The rate constant for fluorescence 
(Kf) was set to 0.05, and the rate constant for heat dissipation as part of NPQ (Kn) was defined as Kn = Kno · 
(1 + β) · xα/(β + xα), where Kno, α, and β are parameters of the empirical model (equal to 5.01, 1.93, 10, re-
spectively). The rate constant of photochemistry (Kp) was set to 4. The degree of light saturation (x, used for 
computation of Kn), the steady-state fluorescence yield (Fs), and the fluorescence efficiency amplification 
factor (ϕ’f) are the output parameters of SCOPE's fluorescence model. NPQ was computed as Kn/(Kf + Kd). 
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The steady-state fluorescence yield was computed as Fs  =  Fm∗(1−ϕp), where light-adapted fluorescence 
yield is Fm= Kf/(Kf + Kd + Kn), and the photochemical yield is ϕp = ϕ0

p · Ja/Je; where ϕ0
p is the photochemical 

yield under dark-adapted conditions, Ja is the actual electron transport rate, and Je is the potential electron 
transport rate (van der Tol et al., 2014).

The simulations included temperature correction of the maximum carboxylation rate (Vcmax, [μmol m−2 s−1]) 
(SCOPE parameter “apply_T_corr” = 1). Soil heat flux was defined as a constant fraction of soil net radia-
tion (SCOPE parameter “soil_heat_method” = 2).

SCOPE was parameterized to reproduce the spectral behavior of a Mediterranean grassland using vegeta-
tion properties derived from field measurements, as well as meteorological data from the research station of 
Majadas de Tiétar (39°56′24.68″N, 5°45′50.27″W) (Cáceres, Spain). The station is located in a typical Medi-
terranean savanna ecosystem dominated by herbaceous stratum constituted by grasses, forbs, and legumes. 
The site is characterized by a mean annual temperature of 16°C but a strong seasonality encompassing a 
wet season from November to May and dry summers (Perez-Priego et al., 2015). A complete description of 
the study site can be found in El-Madany et al. (2018) and Perez-Priego et al. (2017).

In order to realistically represent seasonal and intra-daily meteorological conditions, we used half-hourly 
observations of forcing meteorological variables measured in 2016 (Perez-Priego et al., 2017). Down-welling 
short wave (Rin, [W m−2]) and long wave (Rli, [W m−2]) radiation, air temperature (Tair, [°C]), atmospheric 
vapor pressure (ea, [hPa]), air pressure (p, [hPa]), relative humidity (RH, [%]), and wind speed (u, [m s−1]) 
were recorded at 1.6 m height. VPD, [hPa] was computed from Tair, ea, and RH. Sun zenith (SZA, [°]) and 
azimuth (SAA, [°]) angles were computed from site coordinates and timestamps using the algorithm of 
Reda & Andreas, 2004.

Soil moisture content (SMp, [%]) averaged from 4 sensors at 5 cm depth was used to modulate soil R in 
the brightness-shape-moisture (BSM) sub-model of SCOPE (Verhoef et al., 2018). The parameterization of 
SCOPE was defined according to Pacheco-Labrador et al. (2019) in the same site. Soil resistance for evapo-
ration from the pore space (rss, [s m−1]) was estimated from SMp as in Pacheco-Labrador et al. (2019).

Seasonal variability of LAI [m2  m−2], leaf chlorophyll (Cab, [μg  cm−2]) and carotenoid contents (Cca, 
[μg  cm−2]) was simulated from time series of midday Normalized Difference Vegetation Index (NDVI) 
(Tucker, 1979) measured in 2016 by Decagon SRS sensor (Decagon Devices, Pullman, WA) at the study 
site (Luo et al., 2018). Therefore, these parameters varied daily. LAI was derived from an empirical rela-
tionship with NDVI (Martín et al., 2020) (roughly three times NDVI). Cab was predicted using a model fit 
from field spectral measurements and pigment content determined from destructive samples of 25 × 25 cm 
grass patches, sampled in several campaigns between 2017 and 2019 (Martín et al., 2020; Melendo-Vega 
et al., 2018). Cab was estimated as Cab = (0.007 − (0.0001/NDVI) · log (1 + (NDVI/0.0001))) · 4,443, while 
Cca was predicted as a function of Cab, according to the linear model Cca = 0.24 · Cab + 0.67 using field infor-
mation from the same data set. The ratio of Cab to Cca of the simulated data set ranged from 3.06 in autumn 
to 3.78 in spring. Other parameters were kept constant during the simulation. Leaf angle distribution was 
assumed spherical, Vcmax was set to 80 μmol m−2 s−1, and the slope (m, [-]) of the Ball-Berry model (Collatz 
et al., 1991) was set to 10. These parameters were fixed to simplify the simulations. A constant diffuse to 
global radiation ratio was set to 20%. Moreover, the variables from the biochemical model of SCOPE (e.g., 
NPQ, ϕ’f, ϕp), which are not part of the default output of SCOPE, were also extracted. The same way as the 
model fluxes (e.g., GPP), these variables were computed as a weighted mean of all leaves inside the canopy, 
considering leaf angle distribution and the relative depth of each leaf, which determine the amount of ra-
diation that each leaf receives (van der Tol et al., 2009). However, unlike the fluxes, biochemical variables 
were not scaled by LAI since they are leaf rather than canopy scale parameters.

PRI was computed as follows (Gamon et al., 1992):





570 531

570 531

R RPRI
R R� (3)

where R531 is the reflectance factor of the xanthophyll-sensitive band at 531 nm and R570 is the reflectance 
factor of the reference band at 570 nm. With this formulation, PRI values can vary between −1 and 1 and 
are directly proportional to NPQ.
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To evaluate whether extracted SSA components were related either to the constitutive or the facultative 
drivers of variability, SCOPE model was run in two different modes featuring and excluding physiological 
effects on PRI and F (i.e., the effect of the xanthophyll cycle de-epoxidation on leaf absorption and fluores-
cence efficiency amplification factor (ϕ’f) on F). scope

xanPRI  was simulated featuring the effect of changes in the 
DEPS of the xanthophyll cycle pigments on leaf absorptance with Fluspect-CX (Vilfan et al., 2018), whereas 

scope
0PRI  was computed from R where the effect of the conversion of violaxanthin into zeaxanthin in the 

xanthophyll cycle was not simulated (Figure 1). Therefore,  scopePRI , computed as the difference between 
scope
xanPRI  and scope

0PRI , expresses PRI variability induced only by physiological changes.

Similarly, we simulated a baseline TOC fluorescence featuring ( scope
760F ) and excluding ϕ’f modulation ( scope

0,760F ) 
predicted by the photosynthesis-fluorescence model of SCOPE (van der Tol et al., 2014) (Figure 1). Baseline 
fluorescence corresponds to the emission under unstressed, low light conditions, only affected by canopy 
biophysical properties and illumination conditions, while the difference between scope

760F  and scope
0,760F  ( scope

760F ) 
expresses the physiological regulation of fluorescence emission.

The corresponding apparent fluorescence yield variables ( scope
760Fy , scope

0,760Fy ) were computed as F normal-
ized by PAR. We used PAR instead of aPARCab since the second is not directly measured in most ecosystem 
stations. Therefore, we normalized F with PAR to test the SSA's applicability on the variable most often 
available. The ratio  scope

760F /PAR was computed to validate the SSA-decomposed physiology-related com-
ponent of scope

760Fy . For the definition of the variables simulated with SCOPE and modeled with SSA refer 
to Table 1.

Only daytime data were simulated. Any situation where Rin ≤ 10 W m−2 or SZA ≥ 85° was considered night. 
Night-time values of different model outputs were linearly interpolated between the sunrise and sunset 
values. However, R could strongly change due to small variations in SZA when it is large. Therefore, sunrise 
and sunset were simulated differently to provide a smooth baseline. For these time steps, we set SZA = 85° 
and used the forcing meteorological variables of the following or the previous time step, respectively. R was 
calculated for Rin = 10 W m−2 using the optical radiative transfer module of SCOPE only so that no physio-
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Figure 1.  Schematic diagram showing two different runs of Soil Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model and the workflow 
of Singular Spectrum Analysis (SSA) decomposition.
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logical effect was present and night-time baselines for both scope
xanPRI  and scope

0PRI  were identical. The rest of 
the model outputs were computed for Rin = 0 W m−2 using the full model. At such low radiation levels, the 
effects of the xanthophyll cycle on R resulted negligible, and it was assumed that these simulations could 
be representative of dark night-time. Night-time interpolation is necessary since SSA requires continuous 
data. This gap-filling is reasonable for parameters that are not expected to strongly vary during the night, 
such as F or R-based variables, as is the case for PRI. These assumptions might not completely hold due, for 
example, to physiological recovery. Since PAR equals 0 at night, the night-time gaps in the series of 

760Fy  
were filled with the maximum daytime values selected in the moving window of 1 day. We simulated ob-
servational uncertainty by adding Gaussian noise to the time series of PRI, F760, and 

760Fy  with 0 mean (μ), 
standard deviation (σ) equal to the 95% quantile of daytime data multiplied by 0.01. LUE [µmol CO2/µmol 
photons absorbed] was computed as the ratio of simulated GPP to aPARCab.

2.2.  Singular Spectrum Analysis

SSA is one of several potential time series decomposition techniques. It was chosen here because it is high-
ly data-adaptive and allows for decomposing phase-modulated signals. The method can be described in 
four steps: embedding, decomposition, grouping, and reconstruction (Golyandina & Korobeynikov, 2014) 
(Figure 2).

Step 1 Embedding. The original time series   1,..., NY f f  of length N is transformed into a time-delay-em-
bedding covariance matrix composed of a sequence of K = N−L+1 lagged vectors of length L (win-
dow length):

   1,..., , 1,...,T
i i i LX x x i K� (4)

Step 2 Decomposition. Singular value decomposition (SVD) leads to elementary matrices of rank 1:

  1 ... dX X X� (5)

where d is a rank of X. Each elementary matrix iX  is defined by the eigentriple:

 T
i i i iX U V� (6)

The eigentriple consists of a singular value i , the left eigenvector iU  and the right eigenvector iV . The 
singular values of eigentriples are proportional to the fraction of explained variance corresponding to each 
eigentriple.

Step 3 Grouping. The grouping is performed by choosing the sets of eigentriples (eigentriple grouping) so 
that each set corresponds to an identifiable series component. The grouping procedure partitions 
the set of indices  1,...,d  into m disjoint subsets 1,..., mI I . The result of this step is the grouped matrix 
decomposition of the expansion (6):

  1 ...I ImX X X� (7)

Step 4 Reconstruction. In the last step, each matrix of the grouped decomposition (7) is transformed into a 
new series of length N by diagonal averaging. As a result, the initial time series  1,..., Nf f  is decom-
posed into a sum of m reconstructed series:

 


  
1

, 1,..., .
m k

n n
k

f f n N� (8)

Time series decomposition was implemented using R-packages Rssa (Golyandina et al., 2018; Korobeynikov 
et al., 2017) and spectral.methods (Buttlar et al., 2014). There are two parameters in SSA, which the analyst 
must set: the window length (L) and grouping of the eigentriples. The choice of L is dependent on the char-
acteristics of the subsignals to be extracted. In general, L ≤ N/2, and the higher the L, the more detailed the 
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decomposition is. For the identification of the trend, L should be large enough to be separable from periodic 
oscillations and noise. For the extraction of a periodic component with a period T, it is advisable to have 
L proportional to T. The periods of the harmonic components of the time series can be identified with the 
periodogram.

The grouping can be done manually by analyzing the graphs of eigenvectors and their frequencies or au-
tomatically (Golyandina & Zhigljavsky, 2013). In this study, we used the automatic grouping implemented 
in spectral.methods R-package (Buttlar, 2015), which groups SSA components based on their common fea-
tures. This method measures the commonality of components by means of the weighted correlations be-
tween the components: if the weighted correlation is high, then the corresponding components have similar 
behaviors and should be included in one group (Golyandina et al., 2018).

The whole algorithm was run stepwise for each frequency interval (which are specified by “borders.wl” 
argument, Table S1). This allows adapting L for a particular frequency bin to be extracted. The choice of 
frequency bands is subjective and was determined here based on the time series length and temporal reso-
lution (30 min). We divided time series into three intuitive frequency bins to test SSA component extracted 
in different bins and their relationships with reference signals (i.e., scope

0PRI ,  scopePRI , scope
0,760F ,  scope

760F ). In 
particular, we defined the following classes: long-term or seasonal (2 weeks–1 year), diurnal (7 h–2 weeks), 
sub-diurnal (30 min–7 h). For each frequency bin, the chosen window length L was: 2 months, 1 week, and 
1 day. The choice of window length was supported by the SSA theory (i.e., for extracting the long-term com-
ponent, L was chosen large enough to be separable from the periodic component, while for the extraction of 
diurnal oscillations, L was proportional to the period of 1 day). The data associated with the output of SSA 
analysis can be found in Biriukova et al. (2021).

SSA decomposition was applied on time series of scope
xanPRI , scope

0PRI , scope
760F , scope

0,760F , Fy

760
scope, Fy


0 760,
scope. The pa-

rameters of the decomposition used in the function filterTSeriesSSA are reported in Table S1.

2.3.  Field Data Acquisition and Processing

Spectral measurements (hereafter denoted with subscript “m”) were acquired in Majadas de Tiétar with 
the high-resolution fluorescence box (FloX) device (JB Hyperspectral Devices UG, Germany), specifically 
designed for retrieving F and vegetation indices in visible (VIS) and near-infrared (NIR) domains. The FloX 
system contains two spectrometers — QE Pro (wavelength range of 650–813 nm, spectral sampling interval 
(SSI) of 0.15 nm and full width at half maximum (FWHM) of 0.3 nm), and Flame (wavelength range of 
340–1,020 nm, SSI = 0.65 nm, FWHM = 1.5 nm) (Ocean Optics, USA). The up-welling radiance was meas-
ured with the 25° field of view (FOV) of fiber optics. Down-welling irradiance was measured using hemi-
spherical cosine receptors. The FloX was installed on a radiometric tower at 10 m height, which resulted in 
a radiometric footprint of approximately 4.4 m in diameter. An automatic rotating arm allows sequential 
measurements over a tree and herbaceous stratum with an interval of 15 min. In this work, we use meas-
urements acquired over the herbaceous stratum only. Measurements were collected continuously from  
6 a.m. to 7 p.m. (UTC time) with an average interval of 2 min. The data set covers the period from March 5, 
2017 to October 24, 2018, with gaps associated with the instrument's technical issues from mid-June 2017 to 
mid-August 2017 and from mid-January 2018 to mid-March 2018.

CO2 fluxes between vegetation and atmosphere were measured with the EC technique (e.g., Baldocchi 
et al., 1996) (hereafter denoted with subscript “m”). EC system consists of an infrared gas analyzer LI-COR 
LI7200 (LI-COR Inc, Lincoln NE) and a three-dimensional sonic anemometer Gill R3-50 (Gill Instruments 
Ltd., Lymington). EC was installed at the height of 1.6 m to measure the fluxes of the herbaceous stratum 
(Perez-Priego et al., 2017). Net ecosystem exchange (NEE, [μmol CO2 m−2 s−1]) was partitioned into mGPP , 
[μmol CO2 m−2 s−1] and ecosystem respiration ( mecoR , [μmol CO2 m−2 s−1]) using nighttime-based method 
(Reichstein et al., 2005). Apparent 

mLUE  [μmol CO2/μmol PAR photons] was computed as the ratio of 
mGPP  to mPAR .

Spectral data were aggregated in 30 min intervals and matched with fluxes observations. Gap-filling proce-
dure for measured variables ( mPRI , 760,mF , 

760,mFy , 
mLUE ) included several steps. First, data points acquired 
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under SZA > 70° were discarded. Second, we applied linear interpolation to fill missing data points for each 
day that included more than five valid daytime observations. Third, large gaps in the time series were filled 
using the SSA gap-filling approach implemented in the function gapfillSSA of the spectral.methods R-pack-
age (Buttlar et al., 2014) Forth, the night-time baseline was recomputed for each variable by filling it with 
the maximum or minimum (depending on the variable) daytime values selected in the moving window of 
1 day. Last, Gaussian noise was added to night-time baselines with μ = 0 and σ equal to the 95% quantile of 
daytime data multiplied by 0.01.

Since aPARCab was not available from field observations, the apparent 
mLUE  was estimated as the ratio 

of mGPP  to mPAR . Light-use efficiency represents a combination of different components - green canopy 
structure, light absorption, and physiology (Gitelson & Gamon, 2015). For this reason, we applied the SSA 
decomposition on 

mLUE  to decouple the influence of canopy biochemical and structural properties (i.e., 
faPARCab). In this case, we consider the SSA fast varying component extracted from 

mLUE  a proxy of mLUE .

mPRI , 760,mF , 
760,mFy , and 

mLUE  were decomposed into the same frequency classes as the SCOPE-simu-
lated variables (Section 2.2): long-term or seasonal (2 weeks–1 year), diurnal (7 h–2 weeks), sub-diurnal 
(30 min–7 h). Parameters of the filterTSeriesSSA function used for the decomposition are also identical and 
reported in Table S1.

3.  Results
3.1.  Seasonal Cycles of SCOPE-Simulated Variables

The Mediterranean climate is characterized by a strong seasonality, driven mainly by radiation and precip-
itations (e.g., El-Madany et al., 2018). The rainy period occurs during late fall and early spring, and the dry 
season in summer extends to early fall (Figure 3b). Simulated biophysical parameters, fluxes, and spectral 
variables are coherent with the typical phenology of the grassland at the site (Luo et al., 2020). According to 
the models based on NDVI observations, during the green-up period from fall to winter, simulated LAI and 
Cab increased from 0.5 to 2.5 m2 m−2 and from 7.5 to 25 µg cm−2, respectively (Figure 3d). This variability 
is coherent with expected phenology and with the variability of SMp (Figure 3b). The peak of the growing 
season in Majadas de Tiétar occurs in spring (Luo et al., 2020). This is reproduced by simulated GPP and 

scope
760F , which featured maximum values at the beginning of May (Figures 3e, 3i and 3j). Early summer is 

characterized by a dry-down period, a transition to the hottest and driest season where photosynthesis is 
strongly inhibited by water stress. Summer Tair reaches 40°C and VPD values of 75 hPa (Figures 3a and 3b), 
which is also represented in the simulations.

3.2.  PRI
scope  and F

760

scope as a Function of Vegetation Physiological Response

The difference between total scope
xanPRI  and constitutive scope

0PRI  denoted as  scopePRI  (Table 1) represents the 
vegetation's facultative response to environmental conditions (e.g., solar irradiance) occurring at daily or 
shorter timescales.  scopePRI  can be considered a reliable proxy of the changing DEPS of the xanthophyll 
cycle pigments as part of NPQ. The SCOPE-simulated weighted average of NPQ of all leaves linearly scales 
with  scopePRI  at short temporal scales when canopy structural parameters (LAI) do not vary significantly 
(Figures 4a and 4b). The coefficient of determination (R2) of the linear relationships between  scopePRI  and 
NPQ computed for classes of LAI of equal size varies within a range of 0.75–0.97.

To validate the decomposition of scope
760F  into components related either to biophysical or physiological prop-

erties, we used  scope
760F , the difference between scope

760F  and  scope
0,760F , as a reference for the physiological informa-

tion contained in the fluorescence signal. scope
760F  is scaled with the fluorescence efficiency factor predicted 

by the biochemical model according to the way aPARCab is split in the photosynthetic machinery. Therefore, 
 scope

760F  can be attributed to the physiological regulation of fluorescence efficiency (Figures 4c and 4d). R2 
of the linear relationships between  scope

760F  and ϕ’f computed for classes of LAI of equal size varies within a 
range of 0.73–0.92.

BIRIUKOVA ET AL.

10.1029/2020JG006158

8 of 25



Journal of Geophysical Research: Biogeosciences

For the decomposition analysis, we assume that the scaling of canopy-level parameters  scopePRI  and  scope
760F  

to leaf-level NPQ and ϕ’f is unnecessary if the relationship between the decomposed SSA components and 
NPQ or ϕ’f is evaluated for different LAI classes.

3.3.  Proof of Concept: Extraction of Slow Dynamics From PRI
xan

scope, F
760

scope, and Fy


760

scope With SSA

The slow-varying components of ssa
xanPRI  (seasonal), scope

760F  (seasonal) and ssa
760Fy  (seasonal) extracted with 

SSA are shown in Figures  5a–5c. The slow-varying component of ssa
xanPRI  (seasonal) (Figure  5a) showed 

a high correlation with scope
0PRI  (R2 = 0.97) (Figure 6a). This confirms that SSA was able to distinguish 

the long-term variability of scope
xanPRI  induced by seasonally varying structural and biochemical vegetation 

properties (e.g., LAI or Cab). The SSA extraction of the seasonal component from scope
760F  (Figure 5b) per-

formed worse in comparison to scope
xanPRI , with R2 = 0.46 of the relationship between ssa

760F  (seasonal) and ssa
0,760F  

(Figure  6b). The decomposition of scope
760Fy   allowed to separate the seasonal cycle (Figure  5c) associated 

with the variability of faPARCab. A high positive correlation was observed between ssa
760Fy   (seasonal) and 

scope
0,760Fy  (R2 = 0.96) (Figure 6c).

3.4.  Proof of Concept: Extraction of Fast Variability From PRI
xan

scope , F
760

scope, and Fy


760

scope With SSA

The fast-varying components of ssa
xanPRI  (diurnal + sub-diurnal) (Figure 5d) showed a considerably stronger 

linear relationship with  scopePRI  (R2 = 0.78, Figure 7b) compared to scope
xanPRI  (R2 = 0.02, Figure 7a). The 

same decomposition applied to scope
0PRI  results in a non-significant correlation with  scopePRI  (R2 = 0.05) 

(Figure S1), confirming that SSA can extract the physiologically relevant information from ssa
xanPRI . ssa

xanPRI  
(diurnal + sub-diurnal) related to  scopePRI  more strongly than scope

xanPRI  for all LAI classes above 1 m2 m−2 
(Figure 7c). Figure 7c also evaluates the effect of observational uncertainties by presenting the performance 
of SSA decomposition on noiseless PRI data (dashed lines). As can be seen, the presence of noise does not 
reduce the capability of ssa

xanPRI  (diurnal + sub-diurnal) to predict  scopePRI  (Figure 7c). This supports the 
hypothesis that SSA can be useful for separating the fast variability of PRI attributed to the activation of the 
xanthophyll cycle as part of the reversible NPQ.
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scope
xanPRI Total PRI featuring the effect of the xanthophyll cycle pigment conversion.

0
scopePRI Constitutive PRI excluding the effect of the xanthophyll cycle pigment conversion.

 scopePRI Facultative PRI - the difference between scope
xanPRI  and 0

scopePRI .

ssa
xanPRI SSA-decomposed components of total scope

xanPRI .

760
scopeF Far-red F featuring the fluorescence amplification factor (ϕ’f) modulation.

0,760
scopeF Far-red F yield excluding the fluorescence amplification factor (ϕ’f) modulation.

 760
scopeF The difference between 760

scopeF  and 0,760
scopeF .

760
ssaF SSA-decomposed components of far-red 760

scopeF .


760
scopeFy Far-red apparent F yield featuring the fluorescence amplification factor (ϕ’f) modulation.


0,760
scopeFy Far-red apparent F yield excluding the fluorescence amplification factor (ϕ’f) modulation.


760
ssaFy SSA-decomposed components of far-red 

760
scopeFy .

Table 1 
Definition of the Variables Simulated With SCOPE and Extracted With SSA
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The fast SSA component ssa
760F  (diurnal  +  sub-diurnal) (Figure  7e) showed significant correlations with 

 scope
760F  for LAI from 1.4 to 2.2 m2 m−2, with R2 ranging from 0.27 to 0.65 (Figure 7f). However, ssa

760F  (diur-
nal + sub-diurnal) does not provide more accurate predictions of  scope

760F  than scope
760F  (Figures 7d–7f). The 

same results are found for noiseless simulations, which suggest that SSA cannot extract  scope
760F  from scope

760F  
time series.

The fast component of ssa
760Fy  (diurnal + sub-diurnal) linearly scales with  scope

760 /F PAR both for the entire 
data set (R2 = 0.63, Figure 7h) and for groups of similar LAI (Figure 7i). However, the correlation between 
 scope

760 /F PAR and ssa
760Fy  is slightly stronger for the whole data set (R2 = 0.71, Figure 7g).

When the comparison is carried out per LAI bins, ssa
760Fy  (diurnal + sub-diurnal) cast larger R2 than ssa

760Fy  for 
LAI > 1.4 m2 m−2. The comparison with the decomposition of noiseless data reveals that SSA-decomposed 

ssa
760Fy  (diurnal + sub-diurnal) has a large potential to track  scope

760 /F PAR better than scope
760Fy  (R2 > 0.75), but 

that it is reduced by the presence of noise in the signal (Figure 7i). To ascertain that ssa
760Fy  (diurnal + sub-di-

urnal) is related to vegetation physiology, we applied the same SSA decomposition to scope
0,760Fy . In this case, 

the components of the same frequency showed a lower correlation with  scope
760 /F PAR (R2=0.48), but the 

relationship was still significant (Figure S1).

3.5.  Link Between Fast SSA Components of PRI
xan

ssa  and Fy


760

ssa  and Light-Use Efficiency — Model-
Based Scenario

To evaluate whether SSA-decomposed fast components of optical signals are better related to the physio-
logical response of vegetation than the original undecomposed variables, we compared their relationships 
with LUE (Figure 8). Also, according to the results presented in Figures 7c, 7f and 7i, we considered the 
limitations of SSA to predict fast components of different spectral variables at low LAI values and evaluated 
the relationships for data with LAI above 1 m2 m−2 (Figure 9).

The fast component ssa
xanPRI  (diurnal + sub-diurnal) correlated linearly with LUE better than scope

xanPRI  for 
LAI > 1.4 m2 m–2 (Figure 8g). When we consider only the LAI space where  scopePRI  can be accurately 
predicted by SSA (i.e., LAI > 1 m2 m−2), the overall relationship ssa

xanPRI  (diurnal + sub-diurnal) versus LUE 
strongly improves yielding R2 = 0.7 (Figure 9e).

A priori, the decoupling of the ssa
760Fy  (diurnal + sub-diurnal) component from scope

760Fy  did not improve the 
relationship with LUE (Figure 8f). When LAI < 1 m2 m−2 fast ssa

760Fy  (diurnal + sub-diurnal) predicts LUE 
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Figure 2.  Generic scheme of Singular Spectrum Analysis. Singular value decomposition (SVD) is singular value 
decomposition.
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worse than original signal scope
760Fy  (Figure 8h). Additionally, these relationships are different for high and 

low light conditions (and, therefore, low NPQ), which makes unsuitable the evaluation of the linear models. 
When NPQ < 0.1 (which in the simulation occurs when Rin < 250 W m−2), the relationship between ssa

760Fy  
(diurnal  +  sub-diurnal) and  scope

760 /F PAR and LUE becomes negative (Figure  S2). In order to properly 
evaluate these relationships, we limited the analysis to the cases where  scope

760 /F PAR could be acceptably 
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Figure 4.  (a) Relationship between  scopePRI  and non-photochemical quenching (NPQ) and (b) coefficients of determination (R2) for linear relationships 
between  scopePRI  and NPQ aggregated by leaf area index (LAI) classes of equal size. (c) Relationship between  scope

760F  and ϕ’f and (d) coefficients of 
determination (R2) for linear relationships between  scope

760F  and ϕ’f aggregated by LAI classes of equal size. The data presented in the figure correspond to 
daytime, SZA ≤ 80° and the fraction of the day between 0.2 and 0.8.

Figure 3.  Time series of input Soil Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model variables: (a) air temperature (Tair), (b) vapor 
pressure deficit (VPD) and soil moisture content (SMp), (c) photosynthetically active radiation (PAR), (d) leaf area index (LAI) and chlorophyll content (Cab); 
output SCOPE variables: (e) gross primary production (GPP), (f) light-use efficiency (LUE), (g and h) photochemical reflectance index featuring and excluding 
the effect of the xanthophyll cycle de-epoxidation ( scope

xanPRI , scope
0PRI ), (i and j) far-red fluorescence featuring and excluding fluorescence amplification factor ϕ’f  

( scope
760F , scope

0,760F ), (k and l) far-red apparent fluorescence yield featuring and excluding fluorescence amplification factor (ϕ’f)  scope scope
760 0,760( ,Fy Fy ). Gray dots represent 

the half-hourly values, color lines represent mean daily values for Tair, VPD and mean daytime (SZA ≤ 80° and the fraction of the day between 0.2 and 0.8) daily 
values of PAR, GPP, LUE, scope

xanPRI , scope
0PRI , scope

760F , scope
0,760F , scope

760Fy , scope
0,760Fy .
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predicted, and the relationships with LUE could be represented by a linear model. Discarding the cases 
where LAI < 1 m2 m−2 and Rin < 250 W m−2 (Figures 9b, 9d, 9f and 9h) largely improved the relationship be-
tween ssa

760Fy  (diurnal + sub-diurnal) and LUE (R2 = 0.68) and reduced the Root Mean Square Error (RMSE) 
both in the ssa

760Fy  and the scope
760Fy  models (Figures 9b and 9f).

3.6.  Link Between Fast SSA Components of PRI
m

ssa, F
760,m

ssa , Fy

760,m

ssa , and LUE


m

ssa — Scenario Based 
on Real Data

Diurnal and sub-diurnal components of ssa
mPRI , ssa

760,mF , ssa
760,mFy , and ssa

mLUE  were summed up and consid-
ered together as the fast component. We evaluated the relationships between the fast components of ssa

mPRI , 
ssa
760,mF , ssa

760,mFy  and the fast component of ssa
mLUE  to assess whether SSA-decomposed spectral variables 
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Figure 5.  Upper panel: time series of slow varying (seasonal) components extracted with Singular Spectrum Analysis (SSA) - (a) ssa
xanPRI  (seasonal), (b) scope

760F  
(seasonal), and (c) ssa

760Fy  (seasonal). Lower panel: time series of SSA-extracted fast varying (diurnal + sub-diurnal) components - (d) ssa
xanPRI  (diurnal + sub-

diurnal), (e) ssa
760F  (diurnal + sub-diurnal), and (f) ssa

760Fy  (diurnal + sub-diurnal). The data presented in the figure correspond to daytime.

Figure 6.  (a) Relationship between ssa
xanPRI  (seasonal) and scope

0PRI , (b) ssa
760F  (seasonal) and scope

0,760F , and (c) ssa
760Fy  (seasonal) and Fy


0 760,
scope. The data presented in 

the figure correspond to daytime, SZA ≤ 80° and the fraction of the day between 0.2 and 0.8.
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are linked to the physiological response of vegetation (Figure 10). Based on the results from the modeling 
analyses (Figures 7–9), we filtered out data acquired in summer with NDVI < 0.4 (and, therefore, low LAI) 
(Figures 10a, 10b, 10d, 10e, 10g and 10h) and Rin < 250 W m−2 (Figures 10c, 10f and 10i).

mPRI  showed a weak correlation with ssa
mLUE  (diurnal+sub-diurnal) (R2  =  0.19, Figure  10a). Fast 

SSA-decomposed ssa
mPRI  (diurnal+sub-diurnal) only slightly improved the correlation with ssa

mLUE  
(diurnal+sub-diurnal) (R2 = 0.21, Figure 10d) and showed higher R2 for all NDVI bins except a range of 
0.6–0.67 (Figure 10g).
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Figure 7.  First row: (a) relationship between scope
xanPRI  and  scopePRI ; (b) relationship between ssa

xanPRI  (diurnal + sub-diurnal) and  scopePRI ; (c) R2 for linear 
relationships (a) and (b) aggregated by leaf area index (LAI) classes of equal size excluding and including noise. Second row: (d) relationship between scope

760F  
and  scope

760F ; (e) relationship between ssa
760F  (diurnal + sub-diurnal) and  scope

760F ; (f) R2 for linear relationships (d) and (e) aggregated by LAI classes of equal size 

excluding and including noise. Third row: (g) relationship between scope
760Fy  and  scope

760 /F PAR; (h) relationship between ssa
760Fy  (diurnal + sub-diurnal) and 

 scope
760 /F PAR; (i) R2 for linear relationships (g) and (h) aggregated by LAI classes of equal size excluding and including noise. The data presented in the figure 

correspond to daytime, SZA ≤ 80° and the fraction of the day between 0.2 and 0.8.
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Relationship between ssa
760,mF  and ssa

mLUE  (diurnal+sub-diurnal) showed considerably lower correlation 

(R2 = 0.08, Figure 10e) compared to the relationship between original 760,mF  and ssa
mLUE  (diurnal+sub-di-

urnal) (R2 = 0.17, Figure 10b).

Out of three tested variables only the relationship between ssa
760,mFy  (diurnal+sub-diurnal) and ssa

mLUE  
(diurnal+sub-diurnal) showed a significantly improved correlation compared to the relationship between 
undecomposed 

760,mFy  and ssa
mLUE  (diurnal+sub-diurnal) (R2 = 0.42 vs. R2 = 0.01, Figures 10c and 10f). 

For all analyzed NDVI bins, the R2 of ssa
760,mFy  (diurnal+sub-diurnal) versus ssa

mLUE  (diurnal+sub-diurnal) 
relationship was considerably higher (Figure 10i).

4.  Discussion
4.1.  Performance of SSA in Separating Seasonal and Fast Dynamics of F and PRI

With the increasing availability of high temporal resolution optical data collected simultaneously with CO2 
fluxes at EC stations (Balzarolo et al., 2011; Gamon, et al., 2006), it is pivotal to interpret the information 
provided by these data sets adequately. PRI and F are related to photosynthetic activity but confounded by 
biophysical parameters which vary at different timescales (Gamon & Berry, 2012). To our knowledge, there 
were no previous attempts to use time series decomposition as a tool to disentangle physiological informa-
tion from these signals.

Our approach shows that SSA decomposition of scope
xanPRI , scope

760F , and scope
760Fy  simulated with SCOPE for a 

specific case study of Mediterranean grassland ecosystem allowed to separate slow and fast varying com-
ponents with different levels of accuracy. Following the two-components concept of PRI variability - con-
stitutive and facultative, introduced in Gamon and Berry (2012), we showed that these components could 
be successfully distinguished using the highly data-adaptive SSA technique. The decomposed slow varia-
bility of the total scope

xanPRI  showed a high correlation with constitutive scope
0PRI  (Figure 6a), which is highly 

correlated with modified red-edge normalized difference index (mNDI), sensitive to chlorophyll content 
(R2 = 0.94) (Sims & Gamon, 2002). This result is similar to the strong relationships emerging between PRI of 
perfectly dark-adapted leaves and mNDI obtained in Hmimina et al. (2014, 2015) and Merlier et al. (2015) at 
both leaf and canopy scales. The facultative variability  scopePRI  was well predicted by the fast component 

ssa
xanPRI  extracted with SSA and varying at diurnal and sub-diurnal timescales (Figure 7a).

The potential to capture fast dynamics of spectral signals related to vegetation physiology was assessed by 
relating ssa

xanPRI  (diurnal + sub-diurnal) to LUE. The overall high R2 (Figure 7c) gradually increased from 
low to high LAI values. In the modeled data set, the summer season combined low LAI and reduced water 
availability with highly variable VPD (daily range of 0–75 hPA) (Figure 3b) and NPQ values (daily range of 
0–2.6). Under these severe conditions, there is a lack of PRI response to increasing PAR, which might ex-
plain the low correlation between ssa

xanPRI  (diurnal + sub-diurnal) and LUE found at this period of the year. 
The analyses of noiseless data discarded that these weak correlations in these circumstances were induced 
by noise (Figure 7c).

As shown in Figure 8a, total ssa
xanPRI  and LUE exhibit a non-linear relationship with variability in intercepts 

between LAI classes. The fast component of ssa
xanPRI  (diurnal + sub-diurnal), in turn, linearly correlated with 

LUE when the relationships were considered for the periods of similar LAI (Figures 8g and 9g). Previous 
works of Hmimina et al. (2014, 2015), evaluated the relationships of total and pigment-corrected PRI with 
LUE for short periods, excluding sources of significant LAI changes. We assessed the SSA decomposition 
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Figure 8.  First column: (a) relationship between scope
xanPRI  and light-use efficiency (LUE); (c) relationship between  scopePRI  and LUE; (e) relationship between 

ssa
xanPRI  (diurnal+sub-diurnal) and LUE; (g) R2 for linear relationships (a), (c), (e) aggregated by LAI classes of equal size excluding and including noise. Second 

column: (b) relationship between scope
760Fy  and LUE; (d) relationship between  scope

760 /F PAR and LUE; (f) relationship between ssa
760Fy  (diurnal+sub-diurnal) 

and LUE; (h) R2 for linear relationships (b), (d), (f) aggregated by LAI classes of equal size excluding and including noise. The data presented in the figure 
correspond to daytime, SZA ≤ 80° and the fraction of the day between 0.2 and 0.8.
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under varying LAI and found a strong sensitivity of the models to this parameter which should not be 
disregarded.

Despite the robustness to noise and the capability of SSA to capture the facultative component of PRI 
(Figures  7a–7c), the relationship between measured ssa

mLUE  (diurnal  +  sub-diurnal) and ssa
mPRI  (diur-

nal + sub-diurnal) was not significantly improved compared to the relationship between ssa
mLUE  (diur-

nal + sub-diurnal) and original mPRI  (Figures 10a and 10d). This might be explained by the fact that under 
the strong seasonal variability of the Mediterranean ecosystem (in terms of pigment pool and LAI), the PRI 
signal itself covaries with LUE in a way that, after all the uncertainties, SSA decomposition cannot offer 
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Figure 9.  First column, leaf area index (LAI) > 1 m2 m−2: (a) relationship between scope
xanPRI  and light-use efficiency (LUE); (c) relationship between  scopePRI  

and LUE, (e) relationship between ssa
xanPRI  (diurnal+sub-diurnal) and LUE; (g) R2 for linear relationships (a), (c), (e) aggregated by LAI classes of equal size 

excluding and including noise. Second column, LAI > 1 m2 m−2 and Rin < 250 W m−2: (b) relationship between scope
760Fy  and LUE; (d) relationship between 

 scope
760 /F PAR and LUE; (f) relationship between ssa

760Fy  (diurnal+sub-diurnal) and LUE; (h) R2 for linear relationships (b), (d), (f) aggregated by LAI classes of 
equal size excluding and including noise. The data presented in the figure correspond to daytime, SZA ≤  80° and the fraction of the day between 0.2 and 0.8.

Figure 10.  First column: (a) relationships between mPRI  and ssa
mLUE  (diurnal+sub-diurnal); (d) ssa

mPRI  (diurnal+sub-diurnal) and ssa
mLUE  (diurnal+sub-

diurnal); (g) R2 for linear relationships (a), (d) aggregated by NDVI classes of equal size excluding and including noise. Second column: (b) relationships 
between 760,mF  and ssa

mLUE  (diurnal+sub-diurnal); (e) ssa
760,mF  (diurnal+sub-diurnal) and ssa

mLUE  (diurnal+sub-diurnal); (h) R2 for linear relationships (b), (e) 
aggregated by NDVI classes of equal size excluding and including noise. Third column: (c) relationships between 

760,mFy  and ssa
mLUE  (diurnal + sub-diurnal); 

(f) ssa
760,mFy  (diurnal + sub-diurnal) and ssa

mLUE  (diurnal + sub-diurnal); (i) R2 for linear relationships (c), (f) aggregated by NDVI classes of equal size excluding 
and including noise. The data presented in the figure correspond to daytime data, SZA ≤ 80°, NDVI > 0.4 (a, b, d, e, g, and h), and Rin < 250 W m−2 (c, f, and i).
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significant advantage respect to the original signal. However, this could be a valuable tool in less dynamic 
ecosystems, such as evergreen forests, where the estimation of ΔPRI has provided additional access to LUE 
(Hilker et al., 2008). Also, it must be considered that ssa

mPRI  (diurnal + sub-diurnal) may capture additional 
sources of variation. On the one hand, ssa

xanPRI  (diurnal + sub-diurnal) responds to diurnal and sub-diurnal 
variations of NPQ driven by instantaneous changes in light intensity (Krause & Weis, 1991) and modu-
lated by VPD and Tair (Demmig-Adams & Adams, 1992); on the other hand, these are mixed with direc-
tional effects (i.e., sun position and illumination conditions) imposed on diurnal cycles of PRI (Biriukova 
et al., 2020; Hall et al., 2008; Hilker et al., 2008). Both processes vary in the same frequency bin and only 
change in amplitude, and SSA might be unable to separate these two components.

The capability of SSA to decouple slow and fast dynamics in the fluorescence signal was evaluated for both 
modeled scope

760F  and scope
760Fy  and measured 760,mF  and 

760,mFy . First, we attempted to disentangle aPAR-relat-
ed and physiology-related variabilities in scope

760F . F variability driven only by biophysical vegetation proper-
ties and irradiance  scope

0,760F  was not accurately captured with ssa
760F  (seasonal) (R2 = 0.46) (Figure 6b). Also, 

fast physiological changes ( scope
760F ) were not better predicted by ssa

760F  (diurnal + sub-diurnal) compared to 

the original undecomposed scope
760F  (Figures 7e and 7f). The problem with the SSA decomposition of scope

760F  
can be explained by the fact that both F ( scope

760F  and scope
0,760F ) are strongly driven by aPAR and highly correlated 

with each other (R2 = 0.98). Therefore, the contribution of aPAR-related variability and physiology-related 
component is hard for SSA to decouple since both show a substantial variability at the same temporal scale. 
By normalizing scope

760F  with PAR we removed the part of the variability attributed to irradiance and reduced 
the number of unknowns in the LUE model (Equation 2).

We hypothesized that by decomposing scope
760Fy , we can remove a part of the variability attributed to faPARCab 

and infer information related to fluorescence efficiency ϕ’f. Seasonal variability, associated with faPARCab (R2 
of the relationship between scope

0,760Fy  and faPARCab is 0.99) was captured by the SSA-reconstructed ssa
760Fy  (sea-

sonal) (Figure 6c). The remaining variability attributed to physiological modulation of  scope
760F  normalized 

by PAR was better predicted by ssa
760Fy  (diurnal + sub-diurnal) than by scope

760Fy  (Figure 7i) above a certain LAI 
threshold. The decomposition of scope

760Fy  was more sensitive to noise than the decomposition of PRI; how-
ever, in all the cases, the method resulted inaccurate at low LAI. This might imply the existence of a mini-
mum  scope

760F  threshold for SSA to capture its fast variability. Discarding data modeled with LAI < 1 m2 m−2 
improved the estimation of  scope

760 /F PAR with ssa
760Fy  (diurnal + sub-diurnal) (Figure S3). Despite the sen-

sitivity to noise, when limited to a sufficient LAI range, SSA successfully decoupled physiology-related in-
formation from apparent fluorescence yield both in the modeled data set ssa

760Fy  (diurnal + sub-diurnal) 
versus LUE (Figures 8f, 8h, 9f and 9h) and in the measured data set ssa

760,mFy  (diurnal + sub-diurnal) versus 
ssa
mLUE  (diurnal+sub-diurnal) (Figures 10f and 10i). The evaluation of this tool on simulated data provided 

a valuable insight into the limitations and strengths of SSA in terms of noise and variable space, both for 
the estimation of physiologically driven fast variability and the relationship of these estimates to variables 
of physiological interest (LUE).

The choice of SSA decomposition parameters plays an important role in the reconstruction of time series. 
The decomposition can be potentially improved by varying the “cut-offs” of the frequency bins (Table S1) 
in which we aim to extract the subsignals. Here we tested different frequency bins of varying length and 
borders and heuristically chose broader bins covering three timescales interesting from an ecological point 
of view — seasonal, diurnal, and sub-diurnal. Depending on the time series length and temporal resolution, 
the borders of the frequency bins of interest might be expanded (e.g., if sampling frequency is lower, there 
is no need to detect sub-diurnal components), or narrowed (e.g., in case of sampling frequency higher than 
30 min would be interesting to have several bins per day to explore the dynamics of the fast physiological 
response at different timescales during a day).

4.2.  Limitations and Applicability to Field Data

This study is a model-based proof of concept for decoupling slow dynamics related to biochemical compo-
sition and structural changes and fast physiological dynamics in TOC time series of F and PRI. We chose a 
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model-based study because the variables required to evaluate the proposed decomposition technique (i.e., 
a combination of canopy scale passive and leaf-level active measurements) are only sparsely available and 
prone to uncertainty related to the scaling from leaf- to canopy-level processes such as NPQ. In this context, 
the use of synthetic data generated by a state-of-the-art process-based model allowed evaluating whether 
SSA can disentangle the processes acting at different timescales as encoded in the model. This kind of 
model-based evaluation has been successfully used for various problems lacking suitable data sets (e.g., 
Nelson et al., 2018). However, it should be noted that SCOPE is not a dynamic model. This implies that the 
model does not capture some of the physiological responses (i.e., sustained NPQ) that can be observed in 
the field. When analyzing the links between decomposed PRI and NPQ, it should be considered that NPQ 
involves mechanisms operating at different temporal scales, such as reversible energy-dependent NPQ with 
overnight relaxation and sustained NPQ operating at longer timescales (Porcar-Castell,  2011). However, 
predicting NPQ based on PRI is only possible when reversible NPQ is dominating and sustained NPQ is 
insignificant (Alonso et al., 2017). In SCOPE simulations, we kept a constant rate of sustained NPQ, so 
that modeled NPQ only includes the effect of the xanthophyll cycle activation. Therefore, when applying 
SSA to field data, one should consider that decomposed fast components of PRI may not represent the total 
variability of NPQ.

Additional considerations are associated with the parameterization of SCOPE fluorescence module with 
data sets limited to few species (i.e., cotton), which may also affect the accuracy of the representation of the 
physiological response of grassland ecosystem. Nevertheless, we assume that for the purpose of the decom-
position of slow and fast temporal dynamics of F and PRI with SSA SCOPE provided reasonable variabilities 
controlled by physiological and non-physiological vegetation properties.

Another limitation of the method arises in the case of structurally complex canopies. SCOPE model relies 
on the approach of SAIL, which represents a homogeneous canopy of randomly distributed leaves. This 
approach cannot reliably represent canopies with a strong geometrical component due to a heterogeneous 
3D structure. PRI and fluorescence models have been implemented in 3D RTMs such as FluorFLIGHT 
(Hernández-Clemente et al., 2017) or DART (Gastellu-Etchegorry et al., 2017); however, these implemen-
tations mainly limit to the radiative transfer of these signals, and lack of a coherent coupling with photo-
synthetic efficiency at a comparable level of detail. Further research is needed in the case of structurally 
complex canopies, but current models do not yet allow such detailed analyses.

SSA decomposition requires high temporal resolution data, acquired with at least 1 h–30 min interval to 
track the fast physiological response of F and activation of the xanthophyll cycle, occurring at timescales 
of minutes after changes in light intensity (Müller et al., 2001). In general, the higher the temporal res-
olution of the time series, the more accurate extraction of fast varying physiological components can be 
achieved. With the expanding network of automated proximal sensing systems (Aasen et al., 2019; Cogliati 
et al., 2015), continuous and high-resolution time series of F and R (as measured in Majadas de Tiétar, Fig-
ure 10) become increasingly available.

These systems can be used to acquire time series of PAR, PRI, and F, as well as normalized vegetation 
indices informing on vegetation structure. Often, these systems are installed close to EC sites, which pro-
vide measurements of NEE, partitioned on GPP and respiration, and auxiliary abiotic variables (Rebmann 
et al., 2018), which would be helpful for the evaluation of SSA decomposition performance under different 
environmental conditions. Some EC sites also provide measurements of aPAR, but often this term has to 
be modeled from remote sensing observations, which is still challenging. Apparent LUE∗ (GPP/PAR) and 
fluorescence yield Fy∗ (F/PAR) are usually easier to obtain in comparison to metrics derived using aPAR 
or aPARCab. Gitelson and Gamon (2015) showed that LUE computed as GPP/PAR is the LUE estimate the 
most confounded by canopy structure among other LUE formulations. Contrarily, LUE computed as GPP/
aPARCab mostly depends on the physiological status of vegetation. aPAR can be estimated using several 
downward and upward-facing quantum sensors installed above and below the canopy (Inoue et al., 2008; 
Jenkins et  al.,  2007) or using automated observation systems based on LED sensors (Kim et  al.,  2019). 
aPARCab can be effectively retrieved from field spectral reflectance and transmittance measurements (Serra-
no et al., 2000) or approximated using vegetation greenness indices (e.g., NDVI). However, there is still no 
standard procedure to accurately estimate aPARCab from optical reflectance factors. In this study, we showed 
the applicability of the SSA decomposition on commonly available 

760Fy  and evaluated its relationship with 
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LUE computed as GPP/aPARCab and with SSA-decomposed fast component of ssa
mLUE  (diurnal + sub-diur-

nal) to assess whether the fast component of 
760Fy  is related to physiological status of vegetation.

In addition to time series of optical variables, leaf-level pulse amplitude-modulated (PAM) measurements 
of NPQ, ϕf, and ϕp would be greatly beneficial for validating the decomposition results. For example, simul-
taneous installation of automated high spectral resolution devices (e.g., FloX system, JB Hyperspectral De-
vices UG, Germany) with micro-PAM (Atherton et al., 2016; Magney et al., 2017; Porcar-Castell et al., 2008) 
can provide a data set for the validation of the method. However, the availability of these coupled datasets 
is still very limited.

Since SSA requires data continuity, gap-filling should be applied to time series with missing values. For this 
purpose, SSA has also been successfully used as a gap-filling tool (Buttlar et al., 2014; Mahecha et al., 2007). 
The classical SSA algorithm was modified so that SSA components are estimated based on non-missing val-
ues only, and the values of the reconstructions are imputed to missing values (Golyandina & Osipov, 2007). 
For night-time data, a noisy baseline should be provided as well, for example, by linearly interpolating the 
last daytime observation of a day and the first daytime observation of the following day, or by applying a 
moving window to smooth a baseline. One of the reasons why SSA-decomposition of measured data pre-
sented here did not yield robust results in the case of mPRI  (Figures 10a, 10d and 10g) might be long gaps 
in the time series (up to two months of missing data). In the future, the method should be tested on longer 
and more continuous time series.

5.  Conclusions
Automated proximal sensing is a powerful complement of gas exchange measurements in ecosystem sta-
tions monitoring water and carbon fluxes. It provides spectral signals (F and PRI) encompassing information 
on light-use in the photosynthetic machinery. Therefore, proximal sensing can improve our understanding 
of ecosystem function variability in time. However, these signals are affected by additional confounding 
factors operating at different temporal scales. We demonstrated the capability of SSA to separate the compo-
nents related to canopy structural/biochemical properties and physiology of these signals from a simulated 
realistic time series of spectral and physiological variables. This decomposition was especially successful in 
the case of PRI and 

760Fy , whose relationship with light-use efficiency was strong but still dependent on LAI. 
Application of the method on measured data showed promising results in the case of 

760Fy . We expect that 
applying SSA to automated continuous measurements will improve the contribution of proximal sensing to 
the characterization of ecosystem functional properties.
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