16 research outputs found

    Oxidative phosphorylation is required for powering motility and development of the sleeping sickness parasite Trypanosoma brucei in the tsetse fly vector

    Get PDF
    The single-celled parasite Trypanosoma brucei is transmitted by hematophagous tsetse flies. Life cycle progression from mammalian bloodstream form to tsetse midgut form and, subsequently, infective salivary gland form depends on complex developmental steps and migration within different fly tissues. As the parasite colonizes the glucose-poor insect midgut, ATP production is thought to depend on activation of mitochondrial amino acid catabolism via oxidative phosphorylation (OXPHOS). This process involves respiratory chain complexes and F1Fo-ATP synthase and requires protein subunits of these complexes that are encoded in the parasite's mitochondrial DNA (kDNA). Here, we show that progressive loss of kDNA-encoded functions correlates with a decreasing ability to initiate and complete development in the tsetse. First, parasites with a mutated F1Fo-ATP synthase with reduced capacity for OXPHOS can initiate differentiation from bloodstream to insect form, but they are unable to proliferate in vitro. Unexpectedly, these cells can still colonize the tsetse midgut. However, these parasites exhibit a motility defect and are severely impaired in colonizing or migrating to subsequent tsetse tissues. Second, parasites with a fully disrupted F1Fo-ATP synthase complex that is completely unable to produce ATP by OXPHOS can still differentiate to the first insect stage in vitro but die within a few days and cannot establish a midgut infection in vivo. Third, parasites lacking kDNA entirely can initiate differentiation but die soon after. Together, these scenarios suggest that efficient ATP production via OXPHOS is not essential for initial colonization of the tsetse vector but is required to power trypanosome migration within the fly. IMPORTANCE African trypanosomes cause disease in humans and their livestock and are transmitted by tsetse flies. The insect ingests these parasites with its blood meal, but to be transmitted to another mammal, the trypanosome must undergo complex development within the tsetse fly and migrate from the insect's gut to its salivary glands. Crucially, the parasite must switch from a sugar-based diet while in the mammal to a diet based primarily on amino acids when it develops in the insect. Here, we show that efficient energy production by an organelle called the mitochondrion is critical for the trypanosome's ability to swim and to migrate through the tsetse fly. Surprisingly, trypanosomes with impaired mitochondrial energy production are only mildly compromised in their ability to colonize the tsetse fly midgut. Our study adds a new perspective to the emerging view that infection of tsetse flies by trypanosomes is more complex than previously thought

    Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays

    Get PDF
    The scientific community has responded to the coronavirus disease 2019 (COVID-19) pandemic by rapidly undertaking research to find effective strategies to reduce the burden of this disease. Encouragingly, researchers from a diverse array of fields are collectively working towards this goal. Research with infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is undertaken in high-containment laboratories; however, it is often desirable to work with samples at lower-containment levels. To facilitate the transfer of infectious samples from high-containment laboratories, we have tested methods commonly used to inactivate virus and prepare the sample for additional experiments. Incubation at 80°C, a range of detergents, Trizol reagents, and UV energies were successful at inactivating a high titer of SARS-CoV-2. Methanol and paraformaldehyde incubation of infected cells also inactivated the virus. These protocols can provide a framework for in-house inactivation of SARS-CoV-2 in other laboratories, ensuring the safe use of samples in lower-containment levels

    Trypanosoma brucei colonises the tsetse gut via an immature peritrophic matrix in the proventriculus

    Get PDF
    Abstract The peritrophic matrix (PM) of haematophagus insects is a chitinous structure that surrounds the bloodmeal, forming a protective barrier against oral pathogens and abrasive particles. To establish an infection in the tsetse midgut, Trypanosoma brucei must colonise the ectoperitrophic space (ES), located between the PM and gut epithelium. Although unproven, it is generally accepted that trypanosomes reach the ES by directly penetrating the PM in the anterior midgut. Here we revisited this event by employing novel fluorescence and electron microscopy methodologies and found that instead, trypanosomes reach the ES via the newly secreted PM in the tsetse proventriculus. Within this model, parasites colonising the proventriculus can either migrate to the ES or become trapped within PM layers forming cysts that move along the entire gut as the PM gets remodelled. Early proventricular colonisation appears to be promoted by unidentified factors in trypanosome-infected blood, resulting in higher salivary gland infections and potentially increasing parasite transmission

    Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection

    Get PDF
    Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) extensively glycosylates its spike proteins, which are necessary for host cell invasion and the target of both vaccines and immunotherapies. These glycans are predicted to modulate spike binding to the host receptor by stabilizing its open conformation and host immunity evasion. Here, we investigated the essentiality of both the host -glycosylation pathway and SARS-CoV-2 glycans for infection. Ablation of host glycosylation using RNA interference or inhibitors, including FDA-approved drugs, reduced the spread of the infection, including that of variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Under these conditions, cells produced fewer virions and some completely lost their infectivity. Furthermore, partial enzymatic deglycosylation of intact virions showed that surface-exposed glycans are critical for cell invasion. Altogether, we propose protein glycosylation as a targetable pathway with clinical potential for treatment of COVID-19. The coronavirus SARS-CoV-2 uses its spike surface proteins to infect human cells. Spike proteins are heavily modified with several -glycans, which are predicted to modulate their function. In this work, we show that interfering with either the synthesis or attachment of spike -glycans significantly reduces the spread of SARS-CoV-2 infection , including that of several variants. As new SARS-CoV-2 variants, with various degrees of resistance against current vaccines, are likely to continue appearing, halting virus glycosylation using repurposed human drugs could result in a complementary strategy to reducing the spread of COVID-19 worldwide

    Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus

    Get PDF
    The peritrophic matrix of blood-feeding insects is a chitinous structure that forms a protective barrier against oral pathogens and abrasive particles1. Tsetse flies transmit Trypanosoma brucei, which is the parasite that causes human sleeping sickness and is also partially responsible for animal trypanosomiasis in Sub-Saharan Africa. For this parasite to establish an infection in flies, it must first colonize the area between the peritrophic matrix and gut epithelium called the ectoperitrophic space. Although unproven, it is generally accepted that trypanosomes reach the ectoperitrophic space by penetrating the peritrophic matrix in the anterior midgut2,3,4. Here, we revisited this event using fluorescence- and electron-microscopy methodologies. We show that trypanosomes penetrate the ectoperitrophic space in which the newly made peritrophic matrix is synthesized by the proventriculus. Our model describes how these proventriculus-colonizing parasites can either migrate to the ectoperitrophic space or become trapped within peritrophic matrix layers to form cyst-like bodies that are passively pushed along the gut as the matrix gets remodelled. Furthermore, early proventricular colonization seems to be promoted by factors in trypanosome-infected blood that cause higher salivary gland infections and potentially increase parasite transmission

    SARS-CoV-2 infects an upper airway model derived from induced pluripotent stem cells

    Get PDF
    As one of the primary points of entry of xenobiotic substances and infectious agents into the body, the lungs are subject to a range of dysfunctions and diseases that together account for a significant number of patient deaths. In view of this, there is an outstanding need for in vitro systems in which to assess the impact of both infectious agents and xenobiotic substances of the lungs. To address this issue, we have developed a protocol to generate airway epithelial basal-like cells from induced pluripotent stem cells, which simplifies the manufacture of cellular models of the human upper airways. Basal-like cells generated in this study were cultured on transwell inserts to allow formation of a confluent monolayer and then exposed to an air-liquid interface to induce differentiation into a pseudostratified epithelial construct with a marked similarity to the upper airway epithelium in vivo. These constructs contain the component cell types required of an epithelial model system, produce mucus and functional cilia, and can support SARS-CoV-2 infection/replication and the secretion of cytokines in a manner similar to that of in vivo airways. This method offers a readily accessible and highly scalable protocol for the manufacture of upper airway models that could find applications in development of therapies for respiratory viral infections and the assessment of drug toxicity on the human lungs

    The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector

    Get PDF
    Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of GPI-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate’s skin

    Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis

    Get PDF
    Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes

    FamĂ­lies botĂ niques de plantes medicinals

    Get PDF
    Facultat de FarmĂ cia, Universitat de Barcelona. Ensenyament: Grau de FarmĂ cia, Assignatura: BotĂ nica FarmacĂšutica, Curs: 2013-2014, Coordinadors: Joan Simon, CĂšsar BlanchĂ© i Maria Bosch.Els materials que aquĂ­ es presenten sĂłn els recull de 175 treballs d’una famĂ­lia botĂ nica d’interĂšs medicinal realitzats de manera individual. Els treballs han estat realitzat per la totalitat dels estudiants dels grups M-2 i M-3 de l’assignatura BotĂ nica FarmacĂšutica durant els mesos d’abril i maig del curs 2013-14. Tots els treballs s’han dut a terme a travĂ©s de la plataforma de GoogleDocs i han estat tutoritzats pel professor de l’assignatura i revisats i finalment co-avaluats entre els propis estudiants. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autĂČnom i col·laboratiu en BotĂ nica farmacĂšutica
    corecore