42 research outputs found

    The perception of reproducibility in a small cohort of scientists in Europe

    Get PDF
    Reproducibility is an essential feature of all scientific outcomes. Scientific evidence can only reach its true status as reliable if replicated, but the results of well-conducted replication studies face an uphill battle to be performed, and little attention and dedication have been put into publishing the results of replication attempts. Therefore, we asked a small cohort of researchers about their attempts to replicate results from other groups, as well as from their own laboratories, and their general perception of the issues concerning reproducibility in their field. We also asked how they perceive the venues, i.e. journals, to communicate and discuss the results of these attempts. To this aim we pre-registered and shared a questionnaire among scientists at diverse levels. The results indicate that, in general, replication attempts of their own protocols are quite successful (with over 80% reporting not or rarely having problems with their own protocols). Although the majority of respondents tried to replicate a study or experiment from other labs (75.4%), the median successful rate was scored at 3 (in a 1-5 scale), while the median for the general estimation of replication success in their field was found to be 5 (in a 1-10 scale). The majority of respondents (70.2%) also perceive journals as unwelcoming of replication studies.Peer reviewe

    A platform for reproducibility

    Get PDF
    This is an open editorial about the issues on reproducibility and the current publication system that led us to launch the Journal for Reproduciblity in Neuroscience.Non peer reviewe

    BDNF receptor TrkB as the mediator of the antidepressant drug action

    Get PDF
    Brain-derived neurotrophic factor (BDNF) signaling through its receptor TrkB has for a long time been recognized as a critical mediator of the antidepressant drug action, but BDNF signaling has been considered to be activated indirectly through the action of typical and rapid-acting antidepressants through monoamine transporters and glutamate NMDA receptors, respectively. However, recent findings demonstrate that both typical and the fast-acting antidepressants directly bind to TrkB and thereby allosterically potentiate BDNF signaling, suggesting that TrkB is the direct target for antidepressant drugs. Increased TrkB signaling particularly in the parvalbumin-expressing interneurons orchestrates iPlasticity, a state of juvenile-like enhanced plasticity in the adult brain. iPlasticity sensitizes neuronal networks to environmental influences, enabling rewiring of networks miswired by adverse experiences. These findings have dramatically changed the position of TrkB in the antidepressant effects and they propose a new end-to-end model of the antidepressant drug action. This model emphasizes the enabling role of antidepressant treatment and the active participation of the patient in the process of recovery from mood disorders.Peer reviewe

    Beyond good and evil: a putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment

    Get PDF
    Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.Peer reviewe

    Perineuronal Net Receptor PTP sigma Regulates Retention of Memories

    Get PDF
    Perineuronal nets (PNNs) have an important physiological role in the retention of learning by restricting cognitive flexibility. Their deposition peaks after developmental periods of intensive learning, usually in late childhood, and they help in long-term preservation of newly acquired skills and information. Modulation of PNN function by various techniques enhances plasticity and regulates the retention of memories, which may be beneficial when memory persistence entails negative symptoms such as post-traumatic stress disorder (PTSD). In this study, we investigated the role of PTP sigma [receptor-type tyrosine-protein phosphatase S, a phosphatase that is activated by binding of chondroitin sulfate proteoglycans (CSPGs) from PNNs] in retention of memories using Novel Object Recognition and Fear Conditioning models. We observed that mice haploinsufficient for PTPRS gene (PTP sigma(+/-)), although having improved short-term object recognition memory, display impaired long-term memory in both Novel Object Recognition and Fear Conditioning paradigm, as compared to WT littermates. However, PTP sigma(+/-) mice did not show any differences in behavioral tests that do not heavily rely on cognitive flexibility, such as Elevated Plus Maze, Open Field, Marble Burying, and Forced Swimming Test. Since PTP sigma has been shown to interact with and dephosphorylate TRKB, we investigated activation of this receptor and its downstream pathways in limbic areas known to be associated with memory. We found that phosphorylation of TRKB and PLC gamma are increased in the hippocampus, prefrontal cortex, and amygdaloid complex of PTP sigma(+/-) mice, but other TRKB-mediated signaling pathways are not affected. Our data suggest that PTP sigma downregulation promotes TRKB phosphorylation in different brain areas, improves short-term memory performance but disrupts long-term memory retention in the tested animal models. Inhibition of PTP sigma or disruption of PNN-PTP sigma-TRKB complex might be a potential target for disorders where negative modulation of the acquired memories can be beneficial.Peer reviewe

    TrkB-ICD Fragment, Originating From BDNF Receptor Cleavage, Is Translocated to Cell Nucleus and Phosphorylates Nuclear and Axonal Proteins

    Get PDF
    The signaling of brain-derived neurotrophic factor (BDNF) has been suggested to be impaired in Alzheimer's disease (AD), which may compromise the function of BDNF upon neuronal activity and survival. Accordingly, decreased levels of BDNF and its tropomyosin-receptor kinase B-full-length (TrkB-FL) have been detected in human brain samples of AD patients. We have previously found that neuronal exposure to amyloid-beta (A beta) peptide, a hallmark of AD, leads to calpain overactivation and subsequent TrkB-FL cleavage leading to decreased levels of TrkB-FL and the generation of two new fragments: a membrane-bound truncated receptor (TrkB-T') and an intracellular fragment (TrkB-ICD). Importantly, we identified this TrkB-FL cleavage and TrkB-ICD presence in human brain samples, which indicates that this molecular mechanism contributes to the loss of BDNF signaling in humans. The exact role of this TrkB-ICD fragment is, however, unknown. Here, we used a human neuroglioma cell line and rat cortical primary neuronal cultures to track TrkB-ICD intracellularly. Our data show that TrkB-ICD is a relatively stable fragment that accumulates in the nucleus over time, through a phosphorylation-dependent process. We also found that TrkB-ICD has tyrosine kinase activity, inducing the phosphorylation of nuclear and axonal proteins. These findings suggest that TrkB-ICD may lead to a dysregulation of the activity of several proteins, including proteins in the nucleus, to where TrkB-ICD migrates. Since TrkB-ICD is formed by A beta peptide-induced cleavage of TrkB-FL, the present data highlights a new mechanism that may have a role in AD pathophysiology.Peer reviewe

    Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN

    Get PDF
    The renin-angiotensin system (RAS) is associated with peripheral fluid homeostasis and cardiovascular function, but recent evidence also suggests a functional role in the brain. RAS regulates physiological and behavioral parameters related to the stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain-derived neurotrophic factor (BDNF) and TRKB, which are important in the neurobiology of depression and antidepressant action. However, the interaction between the BDNF/TRKB system and RAS in depression has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into the ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a (a blocker of TRK) infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), also prevented the systemic losartan effect when infused into PL but not into vHC. Cultured cortical cells of rat embryos revealed that angiotensin II (ANG2), possibly through AGTR2, increased the surface levels of TRKB and its coupling to FYN, a SRC family kinase. Higher Agtr2 levels in cortical cells were reduced after stimulation with glutamate, and only under this condition an interaction between losartan and ANG2 was achieved. TRKB/AGTR2 heterodimers were also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, the antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 towards AGTR2, followed by coupling of TRK/FYN and putative TRIG transactivation. Thus, the blockade of AGTR1 has therapeutic potential as a novel antidepressant therapy. (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats

    Get PDF
    It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor n(omega)-propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.Peer reviewe

    nNOS-induced tyrosine nitration of TRKB impairs BDNF signaling and restrains neuronal plasticity

    Get PDF
    Nitric oxide (NO) has been long recognized as an important modulator of neural plasticity, but characterization of the molecular mechanisms involved -specially the guanylyl cyclase-independent ones -has been challenging. There is evidence that NO could modify BDNF-TRKB signaling, a key mediator of neuronal plasticity. However, the mechanism underlying the interplay of NO and TRKB remains unclear. Here we show that NO induces nitration of the tyrosine 816 in the TRKB receptor in vivo and in vitro, and that post-translational modification inhibits TRKB phosphorylation and binding of phospholipase C gamma 1 (PLC gamma 1) to this same tyrosine residue. Addi-tionally, nitration triggers clathrin-dependent endocytosis of TRKB through the adaptor protein AP-2 and ubiquitination, thereby increasing translocation of TRKB away from the neuronal surface and directing it to-wards lysosomal degradation. Accordingly, inhibition of nitric oxide increases TRKB phosphorylation and TRKB-dependent neurite branching in neuronal cultures. In vivo, chronic inhibition of neuronal nitric oxide synthase (nNOS) dramatically reduced TRKB nitration and facilitated TRKB signaling in the visual cortex, and promoted a shift in ocular dominance upon monocular deprivation -an indicator of increased plasticity. Altogether, our data describe and characterize a new molecular brake on plasticity, namely nitration of TRKB receptors.Peer reviewe

    Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro

    Get PDF
    Repurposing of currently available drugs is a valuable strategy to tackle the consequences of COVID-19. Recently, several studies have investigated the effect of psychoactive drugs on SARS-CoV-2 in cell culture models as well as in clinical practice. Our aim was to expand these studies and test some of these compounds against newly emerged variants. Several antidepressants and antipsychotic drugs with different primary mechanisms of action were tested in ACE2/TMPRSS2-expressing human embryonic kidney cells against the infection by SARS-CoV-2 spike protein-dependent pseudoviruses. Some of these compounds were also tested in human lung epithelial cell line, Calu-1, against the first wave (B.1) lineage of SARS-CoV-2 and the variants of concern, B.1.1.7, B.1.351, and B.1.617.2. Several clinically used antidepressants, including fluoxetine, citalopram, reboxetine, imipramine, as well as antipsychotic compounds chlorpromazine, flupenthixol, and pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability. The antiviral action of several of these drugs was verified in Calu-1 cells against the B.1 lineage of SARS-CoV-2. By contrast, the anticonvulsant carbamazepine, and novel antidepressants ketamine, known as anesthetic at high doses, and its derivatives as well as MAO and phosphodiesterase inhibitors phenelzine and rolipram, respectively, showed no activity in the pseudovirus model. Furthermore, fluoxetine remained effective against pseudoviruses with common receptor binding domain mutations, N501Y, K417N, and E484K, as well as B.1.1.7 (alpha), B.1.351 (beta), and B.1.617.2 (delta) variants of SARS-CoV-2. Our study confirms previous data and extends information on the repurposing of these drugs to counteract SARS-CoV-2 infection including different variants of concern, however, extensive clinical studies must be performed to confirm our in vitro findings.Peer reviewe
    corecore