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BDNF receptor TrkB as the
mediator of the antidepressant
drug action
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Brain-derived neurotrophic factor (BDNF) signaling through its receptor

TrkB has for a long time been recognized as a critical mediator of

the antidepressant drug action, but BDNF signaling has been considered

to be activated indirectly through the action of typical and rapid-acting

antidepressants through monoamine transporters and glutamate NMDA

receptors, respectively. However, recent findings demonstrate that both

typical and the fast-acting antidepressants directly bind to TrkB and thereby

allosterically potentiate BDNF signaling, suggesting that TrkB is the direct

target for antidepressant drugs. Increased TrkB signaling particularly in

the parvalbumin-expressing interneurons orchestrates iPlasticity, a state of

juvenile-like enhanced plasticity in the adult brain. iPlasticity sensitizes

neuronal networks to environmental influences, enabling rewiring of networks

miswired by adverse experiences. These findings have dramatically changed

the position of TrkB in the antidepressant effects and they propose a new end-

to-end model of the antidepressant drug action. This model emphasizes the

enabling role of antidepressant treatment and the active participation of the

patient in the process of recovery from mood disorders.
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Introduction

Soon after its discovery, it was recognized that the synthesis of brain-derived
neurotrophic factor (BDNF) is regulated by neuronal activity (Zafra et al., 1990; Isackson
et al., 1991; Dugich-Djordjevic et al., 1992). This finding laid foundation for the
subsequent recognition of BDNF as the critical mediator of activity-dependent neuronal
plasticity and connectivity during development as well as in the adult brain (Thoenen,
1995; Poo, 2001). As the limbic seizures used in early studies to induce BDNF mRNA
expression in mice resembled seizures induced by the electroconvulsive shock therapy
(ECT), these findings raised interest into a possibility that BDNF might be involved in
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the antidepressant mechanisms of ECT. Indeed, Ron Duman’s
group found that ECT-like treatment in rats strongly increased
the expression mRNA for BDNF as well as for its cognate
receptor TrkB (neurotrophic tyrosine kinase receptor,
NTRK2) in the hippocampus and cortex (Nibuya et al.,
1995). Unexpectedly, they found that chronic treatment with
antidepressant drugs also increase the expression of BDNF
mRNA, albeit at lower level (Nibuya et al., 1995). Subsequent
studies showed that BDNF injected into the midbrain region or
hippocampus produces antidepressant-like effects in rodents
(Siuciak et al., 1997; Shirayama et al., 2002). These pioneering
findings led to the proposal of a central role of neurotrophic
factors in the mechanisms of antidepressant drugs (Duman
et al., 1997; Altar, 1999).

Another line of research that led to the recognition of the
role of BDNF and TrkB in the mechanisms of antidepressant
drug action is related to neuronal plasticity. It has been known
for decades that the clinical effects of antidepressants appear
after a delay of several weeks, although the biochemical effects
of these drugs take place within minutes or hours. One potential
explanation for this delay was that some kind of physical, time-
consuming event might be required for the clinical effect to
appear, and neuronal plasticity that involves physical growth
and pruning was a natural candidate (Castrén, 2005). As
BDNF signaling through TrkB is a key mediator of activity-
dependent plasticity, BDNF was an excellent candidate involved
in such a gradual growth process. Indeed, it was shown that
antidepressant drugs reactivate a state of juvenile-like plasticity
in the adult brain, a state that is called iPlasticity (Castrén,
2005; Umemori et al., 2018; Branchi and Giuliani, 2021).
iPlasticity was first demonstrated as the reactivation of ocular
dominance plasticity in the visual cortex (Maya Vetencourt
et al., 2008), which is the classical model of developmental
neuronal plasticity. Subsequent studies have demonstrated
that antidepressants produce iPlasticity also in mood-relevant
networks, such as the fear extinction and aggression control
circuitries (Karpova et al., 2011; Mikics et al., 2018).

The finding that antidepressant treatments promote the
proliferation and survival of newly-born neurons in the rodent
hippocampal dentate gyrus further supported a role of long-
lasting plastic changes in the antidepressant action (Malberg
and Duman, 2003; Malberg et al., 2021). However, it later
turned out that neuronal plasticity and BDNF signaling are
also required for the rapid antidepressant effects of ketamine
(Autry et al., 2011; Duman and Li, 2012; Liu et al., 2012), which
undermined the role of plasticity as the explanation for the delay
in the action of typical antidepressants. Indeed, this delay still
remains a mystery. Together these two lines of research, activity-
dependent BDNF regulation and its role in neuronal plasticity,
laid foundation for the recognition of the critical role for BDNF-
TrkB signaling in the mechanisms of antidepressant drug action
(Duman et al., 1997; Nestler et al., 2002; Duman and Monteggia,
2006; Castrén and Monteggia, 2021).

Brain-derived neurotrophic factor
expression and signaling in the
mechanism of antidepressant
action

Essentially all antidepressant treatments tested so far have
proven to increase the expression of BDNF mRNA and in
most cases also BDNF protein levels. These treatments include
typical antidepressants, including classical tricyclic, monoamine
oxidase inhibitors, and serotonin-selective antidepressants
(SSRI) (Nibuya et al., 1995; Duman et al., 1997; Altar, 1999;
Russo-Neustadt et al., 1999; Coppell et al., 2003; Jacobsen and
Mork, 2004; Duman and Monteggia, 2006; Calabrese et al.,
2007, 2011), the rapid-acting antidepressants ketamine (Li et al.,
2010; Autry et al., 2011; Autry and Monteggia, 2012; Lepack
et al., 2014) and scopolamine (Wohleb et al., 2017), lithium
(Jacobsen and Mork, 2004) as well as ECT (Nibuya et al.,
1995; Jacobsen and Mork, 2004) and vagus nerve stimulation
(Follesa et al., 2007; Biggio et al., 2009; Carreno and Frazer,
2014). Some authors have not found increases in BDNF with
all antidepressants (Jacobsen and Mork, 2004), but doses,
length of treatment and brain regions investigated may have
contributed to this. BDNF mRNA levels are rapidly increase
after ketamine and ECT (Nibuya et al., 1995; Autry et al., 2011),
but several days of treatment with typical antidepressants are
needed for the increase in BDNF mRNA and protein levels
(Nibuya et al., 1995). The increase in BDNF mRNA levels
by antidepressants may be produced by decrease in histone
deacetylation at BDNF promoter regions (Russo-Neustadt
et al., 2001; Dias et al., 2003; Tsankova et al., 2006; Karpova,
2014).

Antidepressants also promote BDNF release and signaling
through TrkB (Castrén and Monteggia, 2021). Consistent with
increased BDNF synthesis, typical as well as rapid-acting
antidepressants increase TrkB autophosphorylation, which has
been used as a proxy for BDNF release and binding to
TrkB, and increase downstream signaling pathways activated by
TrkB (Saarelainen et al., 2003; Rantamäki et al., 2007; Autry
et al., 2011; Lepack et al., 2014). Antidepressants consistently
increase the activation of phospholipase γ-1 (PLCγ-1) pathway
(Saarelainen et al., 2003; Rantamäki et al., 2007), but the
activation of extracellular signal regulated kinase (Erk)-pathway
has also been reported to be activated (Duman et al., 2007;
Lepack et al., 2016) and the activation of the Erk pathway may
play a key role on the ketamine action (Li et al., 2010; Lepack
et al., 2016).

The expression of BDNF mRNA and protein have also
been investigated in humans with depression and antidepressant
treatment. BDNF mRNA and/or protein levels have been
reported to be reduced in postmortem brain samples of
depressed patients (Dunham et al., 2009; Ray et al., 2011,
2014; Guilloux et al., 2012; Dwivedi, 2013) and suicide
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victims (Chen et al., 2001; Dwivedi et al., 2003, 2009;
Pandey et al., 2008; Dwivedi, 2009; Youssef et al., 2018),
and antidepressants restore the reduced levels (Chen et al.,
2001). TrkB and phosphorylated TrkB have also been observed
to be decreased in suicide victims (Dwivedi et al., 2003,
2009; Tripp et al., 2012). Similarly, serum BDNF levels are
reduced in depressed patients (Karege et al., 2002) and
successful antidepressant treatment normalizes these reduced
levels (Shimizu et al., 2003; Gonul et al., 2005; Karege et al.,
2005; Bocchio-Chiavetto et al., 2006, 2010; Yoshimura et al.,
2007; Hellweg et al., 2008; Piccinni et al., 2008; Sen et al.,
2008; Matrisciano et al., 2009; Molendijk et al., 2011, 2014;
Rocha et al., 2016). However, as serum BDNF is derived
from platelets (Yamamoto and Gurney, 1990; Radka et al.,
1996; Fujimura et al., 2002; Lommatzsch et al., 2005; Naegelin
et al., 2018), it is unclear to which extent serum BDNF levels
correspond to brain levels (Seifert et al., 2010; Naegelin et al.,
2018).

It has been widely considered that the effects of
antidepressants on BDNF and TrkB signaling are indirect,
mediated by the action of typical and fast-acting antidepressants
on serotonin and NMDA-type glutamate receptors, respectively.
However, recent findings have questioned the indirect action of
antidepressants on BDNF and neuronal plasticity and revealed
a direct binding of these drugs to TrkB (Casarotto et al., 2021).

Antidepressants bind directly to
TrkB

We recently discovered that essentially all antidepressant
drugs directly bind to TrkB and thereby allosterically promote
TrkB signaling (Casarotto et al., 2021). We first found that
labeled fluoxetine and imipramine bind to TrkB and several
orthogonal methods verified this binding. A point mutation in
the TrkB transmembrane domain (TMD) (TrkB-Y433F) in the
amino acids that are predicted to interact with antidepressants
abolishes antidepressant binding to TrkB, indicating that
fluoxetine binds directly to TrkB. Unexpectedly, we found that
not only typical antidepressants, such as SSRIs and tricyclic
antidepressants, but also the fast-acting antidepressant ketamine
and its active metabolite R,R-hydroxynorketamine (R,R-HNK)
(Zanos et al., 2016) directly bind to TrkB, and the effect
of ketamine are also lost in the TrkB.Y433F mutants. This
mutation as heterozygous abolishes the plasticity-promoting
and antidepressant-related behavioral responses of both SSRIs
and ketamine both in vitro and in vivo. It is important to note
that such heterozygous mutation does not reduce BDNF binding
to TrkB and heterozygous mice with this mutation do not show
any behavioral phenotype (Biojone et al., 2022). Together these
data suggest that direct binding to the TMD of TrkB is the
common mechanism of action of both typical and fast-acting
antidepressants.

TrkB is a single TMD protein that is activated when
the dimeric ligand BDNF induces the dimerization of two
TrkB monomers, which leads to TrkB autophosphorylation
and signaling. Atomistic simulations of TrkB TMD dimers
revealed that TrkB TMD domains cross each other in
the plasma membrane (Figure 1A). The positioning of
the crisscrossed TrkB TMDs is determined by membrane
thickness, which in turn is influenced by cholesterol
concentrations. The crisscrossed conformation is stable
in membranes with moderate cholesterol concentrations,
supporting BDNF signaling, but in thick, cholesterol-rich
membranes, such as synaptic membranes, the crisscrossed
conformation of TrkB monomers tend to flip to parallel
position (Figure 1A). TrkB in this parallel configuration
does not appear to be stable and monomers are excluded
from synaptic membranes (Suzuki et al., 2004; Pereira and
Chao, 2007). Antidepressants bind to the outer crevice
of the crossed transmembrane domains, interacting with
both monomers. Antidepressant act as a kind of a wedge
that stabilizes the crossed monomer configuration of the
TrkB dimer, which increases the residence time of TrkB in
the synapses, thereby enhancing the probability of BDNF
binding and activation of TrkB (Casarotto et al., 2021;
Figure 1A).

Essentially all the plasticity-related or antidepressant-like
structural and behavioral responses to both fluoxetine and
ketamine that we have tested so far are lost in heterozygous
mice carrying the TrkB-Y433F mutation (Casarotto et al., 2021),
which demonstrates that both of these antidepressants act by
binding to the TrkB TMD. These responses include increased
survival of newborn hippocampal neurons, promotion of ocular
dominance plasticity, enhancement of object location memory,
reduction of immobility in the forced swimming test and
facilitation of fear extinction (Casarotto et al., 2021). It is
important to note that these mice normally respond to BDNF
and do not show any baseline behavioral deficits (Biojone
et al., 2022), indicating that these behavioral effects are not
mediated by any loss-of-function effects of BDNF responses,
but are mediated by the inability of TrkB in these mice to bind
antidepressants.

Although antidepressants bind to TrkB, they do not activate
it on their own. Instead, they stabilize a configuration of
TrkB dimers that promote the binding of BDNF, thereby
allosterically potentiating the effects of BDNF onto TrkB
(Figure 1). This is of physiological importance, since the
effects of antidepressants as allosteric BDNF potentiators are
confined to active synapses where BDNF is being released,
whereas direct TrkB agonists would promote the stabilization
of both active and inactive synapses. Therefore, antidepressant-
potentiated BDNF signaling preserves and facilitates activity-
dependent plasticity, which is a critical feature in both
developmental and Hebbian plasticity (Thoenen, 1995; Park and
Poo, 2013).
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FIGURE 1

(A) Dimers of TrkB transmembrane domains (TMD) assume a crossed signaling-competent structure; in thick cholesterol-rich synaptic
membranes, crossed structure becomes instable, and TrkB is excluded from synapses. Binding of fluoxetine (Flx) to the crossed TMDs acts as a
wedge, stabilizing the signaling-competent structure in synaptic membranes. (B) Most TrkBs reside in vesicles or outside synapses;
antidepressants (ADs) promote synaptic localization. (C) In Hebbian plasticity, active synapses are stabilized, whereas inactive ones are retracted,
and brain-derived neurotrophic factor (BDNF) through TrkB is a critical mediator in this process. Antidepressants act as positive allosteric
modulators of TrkB, promoting its localization in synaptic membranes where it can bind BDNF (B) released from stimulated synapses, enhancing
TrkB signaling and stabilizing active synapses. Inactive synapses, however, do not release BDNF to activate synaptic TrkB receptors, which
gradually leads to spine retraction. Direct TrkB agonist would activate TrkB in both active and inactive synapses, gradually leading to the decline
in activity-dependent plasticity.

Antidepressants and neuronal
plasticity

The finding that antidepressants bind to TrkB links them
directly to synaptic plasticity, but it has remained unclear how
potentiated TrkB activity is translated into plasticity at a network
level. Our recent work indicates that TrkB receptors specifically
expressed on the parvalbumin (PV)-containing interneurons
are critical in this regard. PV neurons have already been
implicated in neuronal plasticity: their maturation coincides
with the closure of critical periods of early life plasticity and
inhibition mediated by PV neurons is reduced during iPlasticity
induced by antidepressants or other treatments in the adult
brain (Maya Vetencourt et al., 2008; Sale et al., 2010; Reh
et al., 2020). We found that the antidepressant fluoxetine fails
to induce iPlasticity in mice with reduced expression of TrkB
in PV interneurons (Winkel et al., 2021). Conversely, activation
of a light-sensitive TrkB (optoTrkB) specifically in the PV cells
rapidly orchestrates a state of iPlasticity. Remarkably, optoTrkB
activation replicated all the measures of iPlasticity induced
by fluoxetine, including the reactivation of ocular dominance
plasticity in the visual cortex (Winkel et al., 2021). The state
induced by optoTrkB activation is characterized by a reduction
in the excitability of PV cells produced by reduced expression
and activity of Kv3.1 potassium channels and reduced output of
inhibition to pyramidal neurons (Winkel et al., 2021). This leads
to disinhibition of cortical pyramidal neurons and increased
gamma oscillations, which in turn facilitates plasticity and
underlies iPlasticity. It is remarkable that while activation of
TrkB increases excitability of pyramidal neurons (Figurov et al.,
1996), it reduces excitability of PV interneurons (Winkel et al.,
2021), which is at least partially produced by the PV-cell
specific expression of the Kv3.1 potassium channels. Therefore,
activation of TrkB simultaneously in excitatory and inhibitory
neurons do not counteract each other, but synergize, as the

inhibition onto excitatory neurons is suppressed. It is important
to note that as a consequence of TrkB activation, the PV
interneurons are not simply shut down, which may result
in uncontrolled excitability and seizures, but TrkB activity
orchestrates a new state of PV cell activity that facilitates cortical
plasticity in a controlled manner.

Antidepressants influence TrkB activity in PV neurons
also through other mechanisms. We recently found that
antidepressants disrupt the interaction between TrkB and the
protein tyrosine phosphatase sigma (PTPσ) (Lesnikova et al.,
2021). PTPσ interacts with TrkB and, when activated, restricts
TrkB phosphorylation. Antidepressant-induced disruption of
TrkB-PTPσ interaction therefore releases TrkB from this
inhibitory control, promoting its activity. Interestingly, PTPσ

is a receptor for chondroitin sulfate proteoglycans (Shen et al.,
2009) that are the main constituents of perineuronal nets (PNN)
that encase PV interneurons in the adult brain. It has been
long known that disruption of PNNs by chondroitinase activates
iPlasticity (Pizzorusso et al., 2002; Gogolla et al., 2009; Fawcett
et al., 2019). PNN disruption is expected to reduce the activity
of PTPσ and thereby facilitate TrkB activity. Indeed, we found
that chondroitinase treatment fails to activate iPlasticity in mice
with reduced expression of TrkB in PV interneurons (Lesnikova
et al., 2021), demonstrating that TrkB activity in the PV cells is
necessary for iPlasticity induced not only by antidepressants, but
also by PNN disruption.

We have further found that antidepressant treatment also
disrupts the interaction between TrkB and the adaptor protein
complex-2 (AP-2) that is a critical mediator of endocytosis
(Fred et al., 2019). Consequently, TrkB endocytosis is inhibited,
which leads to increased plasma membrane localization of TrkB,
thereby facilitating BDNF signaling.

Taken together, our recent findings show that
antidepressants facilitate the ability of BDNF to activate
TrkB receptors in PV interneurons through several distinct
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mechanisms: by directly binding to TrkB and allosterically
increasing BDNF signaling (Casarotto et al., 2021); by
inhibiting the dephosphorylation of TrkB through PTPσ; and
by reducing TrkB endocytosis by disrupting the binding of AP-2
to TrkB. Together these mechanisms underlie the controlled
disinhibition of pyramidal networks underlying iPlasticity and
explain why TrkB in PV cells is particularly important for
iPlasticity.

Discussion

Previous studies have already established the critical role
for BDNF-TrkB signaling in the antidepressant action (Castrén
and Monteggia, 2021), but TrkB signaling has been seen
as a secondary effect downstream of antidepressant binding
to their various effector molecules, such as serotonin and
noradrenaline transporters and NMDA receptors. New findings
now propose a new end-to-end model of the antidepressant
drug action. In this model, antidepressant drugs directly bind to
TrkB receptors with low, but clinically meaningful affinity and
thereby allosterically promote BDNF signaling in the plasma
membranes of active synapses (Casarotto et al., 2021; Figure 1).
Through intracellular signaling pathways downstream of TrkB,
BDNF synthesis is increased and the translocation of AMPA-
type glutamate at plasma membranes are increased. Activation
of TrkB receptors particularly in PV-positive interneurons
orchestrates a state of reduced activity of PV interneurons,
which leads to disinhibition of pyramidal networks, turning
on iPlasticity, a state of enhanced plasticity in the cortical
networks (Winkel et al., 2021). iPlasticity sensitizes cortical
networks to environmental experiences and facilitates rewiring
of malfunctioning networks (Umemori et al., 2018; Branchi and
Giuliani, 2021), leading to better adaptation to environment
and mood recovery. Although a lot of research is needed for
many details, this model provides a new framework for the
understanding of the antidepressant action.

In the updated network model of depression, the initial
event is binding of an antidepressant molecule to TrkB
(Casarotto et al., 2021; Figure 1A). The finding that several
different antidepressants, seemingly belonging to different
chemical classes, such as SSRIs, tricyclic antidepressants,
monoamine oxidase inhibitors, and also the rapid-acting
antidepressants ketamine and R,R-HNK all bind to TrkB was
unexpected. A recent finding failed to find interactions between
R,R-HNK and TrkB or any other proteins (Bonaventura et al.,
2022), however, concentrations of R,R-HNK tested may have
been too low to detect binding to TrkB. Furthermore, in spite
of promising preclinical findings (Hess et al., 2022) [but also see
Shirayama and Hashimoto (2018)], whether R,R-HNK produces
clinical antidepressant effects have been questioned (Farmer
et al., 2020) and remain to be determined in clinical trials.
If these findings are confirmed, they will overturn the dogma

of the critical role of monoamines in the antidepressant drug
action. However, it is clear that different antidepressants still
bind to monoamine transporters and NMDA receptors and their
contribution to the clinical outcome should become an active
area of research. For example, the increased positive emotional
bias seen early on during the SSRI treatment is likely mediated
by serotonin and may play a significant role on the outcome
(Harmer et al., 2004, 2017). With improved characterization of
the binding site in TrkB, novel potential antidepressants with
higher affinity to TrkB should be searched for.

One of the most unexpected aspects of the model of the
critical role of TrkB binding in the antidepressant action is that a
common binding site would mediate the effects of both fast and
slow-acting antidepressants. It should be noted, however, that
many different antidepressants reach higher than micromolar
brain concentrations at the steady state, which is compatible
with binding to TrkB (Renshaw et al., 1992; Karson et al., 1993;
Bolo et al., 2000; Henry et al., 2000; Johnson et al., 2007).
Intriguingly, it takes several weeks of continuous treatment
to reach these micromolar fluoxetine concentrations (Karson
et al., 1993). As the brain distribution of other SSRIs (Bolo
et al., 2000; Henry et al., 2000) and also tricyclic antidepressants
resemble that of fluoxetine (Daniel, 2003; Erb et al., 2016), these
observations suggest the tantalizing hypothesis that gradual
accumulation of antidepressants into brain at concentrations
sufficient for binding to a low-affinity site, such as TrkB,
may contribute to the slow onset (Kornhuber et al., 1995).
In contrast, infusion of ketamine produces micromolar brain
concentrations rapidly (Zanos et al., 2018), which is consistent
with rapid onset of action. Therefore, although more research
in this domain is needed, kinetic differences in the access of
antidepressants to TrkB may be at least one factor influencing
the delayed onset of action of typical antidepressants.

The action of antidepressants on network function helps to
explain some discrepancies found in the behavioral responses
to antidepressants. While administration of BDNF and TrkB
agonists produce antidepressant-like effects on the cortex and
hippocampus (Shirayama et al., 2002; Liu et al., 2010; Zhang
et al., 2015a,b), TrkB antagonist ANA-12 paradoxically also
produces antidepressant-like responses (Cazorla et al., 2011;
Shirayama et al., 2015; Zhang et al., 2015a,b). Direct injection
of ANA-12 to nucleus accumbens replicates the antidepressants
effects, which is consistent with earlier studies showing that
BDNF injection into this region produces a depression-like
phenotype (Eisch et al., 2003). Therefore, TrkB activation does
not produce antidepressant effects per se, but by enhancing
plasticity promote the action of the particular network, which
may ameliorate but also aggravate depression (Branchi and
Giuliani, 2021).

The updated network hypothesis of antidepressant action is
in many aspects very different from the traditional monoamine
hypothesis. Although there is some evidence to suggest
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that BDNF signaling might be compromised in depression
(Castrén and Monteggia, 2021), this model does not suggest
that antidepressants act simply by restoring reduced BDNF
signaling, but it emphasizes the role of BDNF-mediated
plasticity that allows reorganization of networks through
coherent activity provided by external and internal environment
(Castrén, 2005; Branchi and Giuliani, 2021; Figures 1B,C). Such
environmental activity can be enriched and guided by therapy or
rehabilitation. However, although neuronal plasticity facilitates
adaptation to changing environmental conditions, adaptation
is not necessarily a positive phenomenon, but can become
maladaptive if guides by an adverse environment (Alboni
et al., 2017; Chiarotti et al., 2017; Branchi and Giuliani, 2021).
Therefore, the model emphasizes that while antidepressants
through facilitated plasticity enable recovery, they do not
themselves cure depression, but active participation of the
patient is required in the recovery process empowered by
antidepressants.
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