139 research outputs found

    Myoblast adhesion, proliferation and differentiation on Human Elastin-Like Polypeptide (HELP) hydrogels

    Get PDF
    Purpose: The biochemical, mechanical and topographic properties of extracellular matrix are crucially involved in determining skeletal muscle cells morphogenesis, proliferation and differentiation. Human elastin-like polypeptides (HELPs) are recombinant biomimetic proteins designed to mimicking some properties of the native matrix protein; when employed as myoblasts adhesion substrates they stimulate in vitro myogenesis. Given the consequences that biophysical properties of extracellular matrix exert on skeletal muscle cells, the aim of this work was to investigate the effects of HELP hydrogels on myoblasts viability and functions. Methods: We recently synthesized a novel polypeptide, HELPc, by fusing the elastin-like backbone to a 41aa stretch present in the α2 chain of type IV collagen, containing two RGD motifs. To obtain hydrogels, the enzymatic cross-linking of the HELPc was accomplished by transglutaminase. Here, we employed both non cross-linked HELPc glass coatings and cross-linked HELPc hydrogels at different monomer density as adhesion substrates for C2C12 cells, used as myoblasts model. Results: By comparing cell adhesion, proliferation and differentiation, we revealed several striking differences. Depending on support rigidity, adhesion to HELPc substrates dictates cell morphology, spreading, focal adhesions formation and cytoskeletal organization. Hydrogels greatly stimulated cell proliferation, particularly in low serum-medium, and partially inhibited myogenic differentiation. Conclusions: In the whole, the results underline the potentiality of these genetically engineered polypeptides as a tool for dissecting crucial steps in myogenesis

    GM1 Ganglioside role in the interaction of Alpha-synuclein with lipid membranes: Morphology and structure

    Get PDF
    Alpha-Synuclein (AS) is the protein playing the major role in Parkinson's disease (PD), a neurological disorder characterized by the degeneration of dopaminergic neurons and the accumulation of AS into amyloid plaques. The aggregation of AS into intermediate aggregates, called oligomers, and their pathological relation with biological membranes are considered key steps in the development and progression of the disease. Here we propose a multi-technique approach to study the effects of AS in its monomeric and oligomeric forms on artificial lipid membranes containing GM1 ganglioside. GM1 is a component of functional membrane micro-domains, called lipid rafts, and has been demonstrated to bind AS in neurons. With the aim to understand the relation between gangliosides and AS, here we exploit the complementarity of microscopy (Atomic Force Microscopy) and neutron scattering (Small Angle Neutron Scattering and Neutron Reflectometry) techniques to analyze the structural changes of two different membranes (Phosphatidylcholine and Phosphatidylcholine/GM1) upon binding with AS. We observe the monomer- and oligomer-interactions are both limited to the external membrane leaflet and that the presence of ganglioside leads to a stronger interaction of the membranes and AS in its monomeric and oligomeric forms with a stronger aggressiveness in the latter. These results support the hypothesis of the critical role of lipid rafts not only in the biofunctioning of the protein, but even in the development and the progression of the Parkinson's disease

    Free Meixner states

    Full text link
    Free Meixner states are a class of functionals on non-commutative polynomials introduced in math.CO/0410482. They are characterized by a resolvent-type form for the generating function of their orthogonal polynomials, by a recursion relation for those polynomials, or by a second-order non-commutative differential equation satisfied by their free cumulant functional. In this paper, we construct an operator model for free Meixner states. By combinatorial methods, we also derive an operator model for their free cumulant functionals. This, in turn, allows us to construct a number of examples. Many of these examples are shown to be trivial, in the sense of being free products of functionals which depend on only a single variable, or rotations of such free products. On the other hand, the multinomial distribution is a free Meixner state and is not a product. Neither is a large class of tracial free Meixner states which are analogous to the simple quadratic exponential families in statistics.Comment: 30 page

    A unique MSH2 exon 8 deletion accounts for a major portion of all mismatch repair gene mutations in Lynch syndrome families of Sardinian origin

    Get PDF
    Lynch syndrome is an autosomal-dominant hereditary condition predisposing to the development of specific cancers, because of germline mutations in the DNA-mismatch repair (MMR) genes. Large genomic deletions represent a significant fraction of germline mutations, particularly among the MSH2 gene, in which they account for 20% of the mutational spectrum. In this study we analyzed 13 Italian families carrying MSH2 exon 8 deletions, 10 of which of ascertained Sardinian origin. The overrepresentation of Sardinians was unexpected, as families from Sardinia account for a small quota of MMR genes mutation tests performed in our laboratory. The hypothesis that such a result is owing to founder effects in Sardinia was tested by breakpoint junctions sequencing and haplotype analyses. Overall, five different exon eight deletions were identified, two of which recurrent in families, all apparently unrelated, of Sardinian origin (one in eight families, one in two families). The c.1277–1180_1386+2226del3516insCATTCTCTTTGAAAA deletion shares the same haplotype between all families and appears so far restricted to the population of South-West Sardinia, showing the typical features of a founder effect. The three non-Sardinian families showed three different breakpoint junctions and haplotypes, suggesting independent mutational events. This work has useful implications in genetic testing for Lynch syndrome. We developed a quick test for each of the identified deletions: this can be particularly useful in families of Sardinian origin, in which MSH2 exon 8 deletions may represent 50% of the overall mutational spectrum of the four MMR genes causing Lynch syndrome

    The High Mobility Group A1 (HMGA1) Chromatin Architectural Factor Modulates Nuclear Stiffness in Breast Cancer Cells

    Get PDF
    13siPlasticity is an essential condition for cancer cells to invade surrounding tissues. The nucleus is the most rigid cellular organelle and it undergoes substantial deformations to get through environmental constrictions. Nuclear stiffness mostly depends on the nuclear lamina and chromatin, which in turn might be affected by nuclear architectural proteins. Among these is the HMGA1 (High Mobility Group A1) protein, a factor that plays a causal role in neoplastic transformation and that is able to disentangle heterochromatic domains by H1 displacement. Here we made use of atomic force microscopy to analyze the stiffness of breast cancer cellular models in which we modulated HMGA1 expression to investigate its role in regulating nuclear plasticity. Since histone H1 is the main modulator of chromatin structure and HMGA1 is a well-established histone H1 competitor, we correlated HMGA1 expression and cellular stiffness with histone H1 expression level, post-translational modifications, and nuclear distribution. Our results showed that HMGA1 expression level correlates with nuclear stiffness, is associated to histone H1 phosphorylation status, and alters both histone H1 chromatin distribution and expression. These data suggest that HMGA1 might promote chromatin relaxation through a histone H1-mediated mechanism strongly impacting on the invasiveness of cancer cells-openopenSenigagliesi B, Penzo C, Severino LU, Maraspini R, Petrosino S, Morales-Navarrete H, Pobega E, Ambrosetti E, Parisse P, Pegoraro S, Manfioletti G, Casalis L, Sgarra RSenigagliesi, Beatrice; Penzo, C; Severino, Lu; Maraspini, R; Petrosino, Sara; Morales-Navarrete, H; Pobega, E; Ambrosetti, E; Parisse, P; Pegoraro, S; Manfioletti, G; Casalis, L; Sgarra,

    Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Get PDF
    One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM) respectively, crystal structure by X-Ray Diffraction measurements (XRD) and ZnO stoichiometry by core level photoemission spectroscopy (XPS)

    Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures

    Get PDF
    The increasing engineering of carbon-based nanomaterials as components of neuro-regenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favour dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned Entorhinal-Hippocampal Complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fibre sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering. This article is protected by copyright. All rights reserved

    Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks

    Get PDF
    Graphene offers promising advantages for biomedical applications. However, adoption of graphene technology in biomedicine also poses important challenges in terms of understanding cell responses, cellular uptake, or the intracellular fate of soluble graphene derivatives. In the biological microenvironment, graphene nanosheets might interact with exposed cellular and subcellular structures, resulting in unexpected regulation of sophisticated biological signaling. More broadly, biomedical devices based on the design of these 2D planar nanostructures for interventions in the central nervous system require an accurate understanding of their interactions with the neuronal milieu. Here, we describe the ability of graphene oxide nanosheets to down-regulate neuronal signaling without affecting cell viability

    Influence of steps on the tilting and adsorption dynamics of ordered Pn films on vicinal Ag(111) surfaces

    Get PDF
    Here we present a structural study of pentacene (Pn) thin films on vicinal Ag(111) surfaces by He atom diffraction measurements and density functional theory (DFT) calculations supplemented with van der Waals (vdW) interactions. Our He atom diffraction results suggest initial adsorption at the step edges evidenced by initial slow specular reflection intensity decay rate as a function of Pn deposition time. In parallel with the experimental findings, our DFT+vdW calculations predict the step edges as the most stable adsorption site on the surface. An isolated molecule adsorbs as tilted on the step edge with a binding energy of 1.4 eV. In addition, a complete monolayer (ML) with pentacenes flat on the terraces and tilted only at the step edges is found to be more stable than one with all lying flat or tilted molecules, which in turn influences multilayers. Hence our results suggest that step edges can trap Pn molecules and act as nucleation sites for the growth of ordered thin films with a crystal structure similar to that of bulk Pn.Comment: 4 pages, 4 figures, 1 tabl

    Glioma-associated stem cells: A novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas.

    Get PDF
    Background: Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. Methods and Findings: We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. Conclusions: The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma
    • 

    corecore