218 research outputs found

    Using clinical guidelines to assess the potential value of laboratory medicine in clinical decision-making

    Get PDF
    Introduction: It is often quoted that 70% of clinical decisions are based on laboratory results, but the evidence to substantiate this claim is lacking. Since clinical guidelines aim to document best-practice decision making for specific disease conditions, inclusion of any laboratory test means that the best available evidence is recommending clinicians use it. Cardiovascular disease (CVD) is the world’s most common cause of mortality, so this study reviewed all CVD guidelines published by five national/international authorities to determine what proportion of them recommended laboratory testing. Materials and methods: Five leading CVD guidelines were examined, namely the European Society of Cardiology (ESC), the UK National Institute for Health and Clinical Excellence (NICE), the American College of Cardiology (ACC), the Australian Heart Foundation (AHF) and the Cardiac Society of Australia and New Zealand (CSANZ). Results: A total of 101 guidelines were reviewed. Of the 33 individual ESC guidelines relating to CVD, 24/33 made a direct reference to the use of clinical laboratory tests in either diagnosis or follow-up treatment. The same applied to 15/20 of NICE guidelines, 24/32 from the ACC and 15/16 from the AHF/CSANZ. Renal function and blood count testing were the most recommended (39 and 26 times), with lipid, troponin and natriuretic peptide measurement advocated 25, 19 and 19 times respectively. Conclusions: This study has shown that laboratory testing is advocated by between 73% and 94% of individual CVD guideline recommendations from five national/international authorities. This provides an index to assess the potential value of laboratory medicine to healthcare

    A Genetic Algorithm solver for pest management control in Island systems

    Get PDF
    Island conservation management is a truly multidisciplinary problem that requires considerable knowledge of the characteristics of the ecosystem, species and their interactions. Nevertheless, this can be translated into an optimisation problem. Essentially, within a limited budget, a manager needs to select the conservation actions according to expected payoffs (in terms of protecting or restoring desired species) versus cost (the amount of resources/money) required for the actions. This paper presents the problem in terms of a knapsack formulation and develops optimisation techniques to solve it. From this, decision-support software is being developed, tailored to meet the needs of pest control on islands for conservation managers. The solver uses a Genetic Algorithm and incorporates a simplified model of the problem. The solver derives strategies that reduce the number of threats, allowing the preservation of desired species. However, the problem model needs further refinement to derive truly realistic options for conservation managers

    Methods of olfactory ensheathing cell harvesting from the olfactory mucosa in dogs

    Get PDF
    Olfactory ensheathing cells are thought to support regeneration and remyelination of damaged axons when transplanted into spinal cord injuries. Following transplantation, improved locomotion has been detected in many laboratory models and in dogs with naturally-occurring spinal cord injury; safety trials in humans have also been completed. For widespread clinical implementation, it will be necessary to derive large numbers of these cells from an accessible and, preferably, autologous, source making olfactory mucosa a good candidate. Here, we compared the yield of olfactory ensheathing cells from the olfactory mucosa using 3 different techniques: rhinotomy, frontal sinus keyhole approach and rhinoscopy. From canine clinical cases with spinal cord injury, 27 biopsies were obtained by rhinotomy, 7 by a keyhole approach and 1 with rhinoscopy. Biopsy via rhinoscopy was also tested in 13 cadavers and 7 living normal dogs. After 21 days of cell culture, the proportions and populations of p75-positive (presumed to be olfactory ensheathing) cells obtained by the keyhole approach and rhinoscopy were similar (~4.5 x 106 p75-positive cells; ~70% of the total cell population), but fewer were obtained by frontal sinus rhinotomy. Cerebrospinal fluid rhinorrhea was observed in one dog and emphysema in 3 dogs following rhinotomy. Blepharitis occurred in one dog after the keyhole approach. All three biopsy methods appear to be safe for harvesting a suitable number of olfactory ensheathing cells from the olfactory mucosa for transplantation within the spinal cord but each technique has specific advantages and drawbacks

    Delivery of chondroitinase by canine mucosal olfactory ensheathing cells alongside rehabilitation enhances recovery after spinal cord injury

    Get PDF
    Spinal cord injury (SCI) can cause chronic paralysis and incontinence and remains a major worldwide healthcare burden, with no regenerative treatment clinically available. Intraspinal transplantation of olfactory ensheathing cells (OECs) and injection of chondroitinase ABC (chABC) are both promising therapies but limited and unpredictable responses are seen, particularly in canine clinical trials. Sustained delivery of chABC presents a challenge due to its thermal instability; we hypothesised that transplantation of canine olfactory mucosal OECs genetically modified ex vivo by lentiviral transduction to express chABC (cOEC-chABC) would provide novel delivery of chABC and synergistic therapy. Rats were randomly divided into cOEC-chABC, cOEC, or vehicle transplanted groups and received transplant immediately after dorsal column crush corticospinal tract (CST) injury. Rehabilitation for forepaw reaching and blinded behavioural testing was conducted for 8 weeks. We show that cOEC-chABC transplanted animals recover greater forepaw reaching accuracy on Whishaw testing and more normal gait than cOEC transplanted or vehicle control rats. Increased CST axon sprouting cranial to the injury and serotonergic fibres caudal to the injury suggest a mechanism for recovery. We therefore demonstrate that cOECs can deliver sufficient chABC to drive modest functional improvement, and that this genetically engineered cellular and molecular approach is a feasible combination therapy for SCI

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    A national-scale dataset for threats impacting Australia's imperiled flora and fauna

    Get PDF
    Australia is in the midst of an extinction crisis, having already lost 10% of terrestrial mammal fauna since European settlement and with hundreds of other species at high risk of extinction. The decline of the nation's biota is a result of an array of threatening processes; however, a comprehensive taxon-specific understanding of threats and their relative impacts remains undocumented nationally. Using expert consultation, we compile the first complete, validated, and consistent taxon-specific threat and impact dataset for all nationally listed threatened taxa in Australia. We confined our analysis to 1,795 terrestrial and aquatic taxa listed as threatened (Vulnerable, Endangered, or Critically Endangered) under Australian Commonwealth law. We engaged taxonomic experts to generate taxon-specific threat and threat impact information to consistently apply the IUCN Threat Classification Scheme and Threat Impact Scoring System, as well as eight broad-level threats and 51 subcategory threats, for all 1,795 threatened terrestrial and aquatic threatened taxa. This compilation produced 4,877 unique taxon–threat–impact combinations with the most frequently listed threats being Habitat loss, fragmentation, and degradation (n = 1,210 taxa), and Invasive species and disease (n = 966 taxa). Yet when only high-impact threats or medium-impact threats are considered, Invasive species and disease become the most prevalent threats. This dataset provides critical information for conservation action planning, national legislation and policy, and prioritizing investments in threatened species management and recovery

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Incorporating uncertainty associated with habitat data in marine reserve design

    Get PDF
    One of the most pervasive forms of uncertainty in data used to make conservation decisions is error associated with mapping of conservation features. Whilst conservation planners should consider uncertainty associated with ecological data to make informed decisions, mapping error is rarely, if ever, accommodated in the planning process. Here, we develop a spatial conservation prioritization approach that accounts for the uncertainty inherent in coral reef habitat maps and apply it in the Kubulau District fisheries management area, Fiji. We use accuracy information describing the probability of occurrence of each habitat type, derived from remote sensing data validated by field surveys, to design a marine reserve network that has a high probability of protecting a fixed percentage (10-90%) of every habitat type. We compare the outcomes of our approach to those of standard reserve design approaches, where habitat-mapping errors are not known or ignored. We show that the locations of priority areas change between the standard and probabilistic approaches, with errors of omission and commission likely to occur if reserve design does not accommodate mapping accuracy. Although consideration of habitat mapping accuracy leads to bigger reserve networks, they are unlikely to miss habitat conservation targets. We explore the trade-off between conservation feature representation and reserve network area, with smaller reserve networks possible if we give up on trying to meet targets for habitats mapped with a low accuracy. The approach can be used with any habitat type at any scale to inform more robust and defensible conservation decisions in marine or terrestrial environments. (C) 2013 Elsevier Ltd. All rights reserved

    Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting

    Get PDF
    Background: The typical mandate in conservation planning is to identify areas that represent biodiversity targets within the smallest possible area of land or sea, despite the fact that area may be a poor surrogate for the cost of many conservation actions. It is also common for priorities for conservation investment to be identified without regard to the particular conservation action that will be implemented. This demonstrates inadequate problem specification and may lead to inefficiency: the cost of alternative conservation actions can differ throughout a landscape, and may result in dissimilar conservation priorities
    corecore