14 research outputs found

    Utility of routine versus selective upper gastrointestinal series to detect anastomotic leaks after laparoscopic gastric bypass

    Full text link
    BACKGROUND: In up to 4% of laparoscopic Roux-en-Y gastric bypass (LRYGB) procedures, anastomotic leaks occur. Early detection of gastrointestinal leakage is important for successful treatment. Consequently, many centers advocate routine postoperative upper gastrointestinal (UGI) series. The aim of this study was to determine the utility of this practice after LRYGB. METHODS: Eight hundred four consecutive patients undergoing LRYGB from June 2000 to April 2010 were analyzed prospectively. The first 382 patients received routine UGI series between the third and fifth postoperative days (group A). Thereafter, the test was only performed when clinical findings (tachycardia, fever, and drainage content) were suspicious for a leak of the gastrointestinal anastomosis (group B; n = 422). RESULTS: Overall, nine of 804 (1.1%) patients suffered from leaks at the gastroenterostomy. In group A, four of 382 (1%) patients had a leak, but only two were detected by the routine UGI series. This corresponds to a sensitivity of 50%. In group B, the sensitivity was higher with 80%. Specificities were comparable with 97% and 91%, respectively. Routine UGI series cost only 1.6% of the overall costs of a non-complicated gastric bypass procedure. With this leak rate and sensitivity, US $86,800 would have to be spent on 200 routine UGI series to find one leak which is not justified. CONCLUSIONS: This study shows that routine UGI series have a low sensitivity for the detection of anastomotic leaks after LRYGB. In most cases, the diagnosis is initiated by clinical findings. Therefore, routine upper gastrointestinal series are of limited value for the diagnosis of a leak

    Benefit of iodine density images to reduce out-of-field image artifacts at rapid kVp switching dual-energy CT

    No full text
    PURPOSE: To evaluate the reduction of out-of-field artifacts caused by body parts outside the field of view (FOV) at rapid kVp switching dual-energy CT (rsDECT). MATERIALS AND METHODS: This retrospective study was approved by our institutional review board. Informed consent was not required. We viewed 246 consecutive rsDECT thoracoabdominal scans to identify those with body parts outside the maximal FOV of 50 cm. The maximal length, thickness, and subjective severity of the out-of-field artifacts were recorded for the 40, 65, and 140 keV virtual monochromatic and iodine and water density images. Artifact severity was rated on a 6-point scale from 0 = absent to 5 = obscures intraabdominal/intrathoracic anatomic detail. Artifact thickness and severity scores were compared by t-test and Wilcoxon tests, respectively. RESULTS: In 20 of 246 scans (8.1%), body parts extended past the maximum FOV of 50 cm. The mean BMI of these 20 patients was 40.2 kg/m(2) (range, 26.83-61.69 kg/m(2)), and out-of-field artifacts occurred for all 20. The mean out-of-field artifact maximal length was 16.6 cm. The mean artifact thickness was significantly less for iodine density (0.6 mm) than for the 65 keV and water density images (8.4 and 13.5 mm, respectively, p < 0.001 each comparison). The mean artifact severity score was lower for iodine density (0.2) than for the 65 keV and water density images (2.5 and 2.6, respectively, p < 0.001 each). CONCLUSION: Iodine density images reduce out-of-field image artifact at rsDECT and assists in the evaluation of peripheral tissues that extend beyond the maximal CT FOV

    A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones

    No full text
    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge
    corecore