99 research outputs found

    KCa and Ca2+ channels: The complex thought

    Get PDF
    AbstractPotassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca2+-activated K+ channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca2+ channels are divided into two main families, voltage gated/voltage dependent Ca2+ channels and non-voltage gated/voltage independent Ca2+ channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca2+ channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca2+. Non-voltage gated Ca2+ channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca2+ channels while non-voltage gated Ca2+ channels are activated by Ca2+ depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca2+ channel families also control constitutive Ca2+ entries. For reducing the energy consumption and for the fine regulation of Ca2+, KCa and Ca2+ channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa–Ca2+ channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau

    Data pertaining to aberrant intracellular calcium handling during androgen deprivation therapy in prostate cancer

    Get PDF
    The data generated here in relates to the research article “CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer”. A model of prostate cancer (PCa) progression to castration resistance was employed, with untreated androgen sensitive LNCaP cell line alongside two androgen deprived (bicalutamide) sublines, either 10 days (LNCaP-ADT) or 2 years (LNCaP-ABL) treatment, in addition to androgen insensitive PC3. With this PCa model, qPCR was used to examined fold change in markers linked to androgen resistance, androgen receptor (AR) and neuron specific enolase (NSE), observing an increase under androgen deprivation. In addition, the gene expression of a range of calcium channels was measured, with only the L-type Voltage gated calcium channel, CACNA1D, demonstrating an increase during androgen deprivation. With CACNA1D knockdown the channel was found not to influence the gene expression of calcium channels, ORAI1 and STIM1. The calcium channel blocker (CCB), nifedipine, was employed to determine the impact of CaV1.3 on the observed store release and calcium entry measured via Fura-2AM ratiometric dye in our outlined PCa model. In both the presence and absence of androgen deprivation, nifedipine was found to have no impact on store release induced by thapsigargin (Tg) in 0mM Ca(2+) nor store operated calcium entry (SOCE) following the addition of 2mM Ca(2+). However, CACNA1D siRNA knockdown was able to reduce SOCE in PC3 cells. The effect of nifedipine on CaV1.3 in PCa biology was measured through cell proliferation assay, with no observed change in the presence of CCB. While siCACNA1D reduced PC3 cell proliferation. This data can be reused to inform new studies investigating altered calcium handling in androgen resistant prostate cancer. It provides insight into the mechanism of CaV1.3 and its functional properties in altered calcium in cancer, which can be of use to researchers investigating this channel in disease. Furthermore, it could be helpful in interpreting studies investigating CCB's as a therapeutic and in the development of future drugs targeting CaV1.3

    Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species

    Une chaîne d’extraction pour l’enrichissement de bases de données archéologiques

    Get PDF
    Cet article décrit une expérience visant à extraire des informations textuelles pour alimenter automatiquement des bases de données dans le domaine de l’archéologie. Les premières expériences ont porté sur les Cartes archéologiques de la Gaule (CAG). Elles ont permis d’observer des problèmes de transfert d’information et d’évolution des thésaurus, un même terme ne désignant pas toujours la même notion au cours du temps, ou un site archéologique pouvant avoir été catégorisé de différentes manières au cours du temps.This article focuses on an experiment aimed at extracting information from text in order to automatically feed databases in the field of archaeology. The first experiments concerned a set of books: the Cartes archéologiques de la Gaule (CAG). Knowledge transfer and meaning evolution phenomena were observed when thesauri were examined, since the same term can refer to different notions, and the same archaeological site may be categorised differently, at different points in time

    Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis

    Get PDF
    Intracellular Ca2+ levels are important regulators of cell cycle and proliferation. We, and others, have previously reported the role of KCa3.1 (KCNN4) channels in regulating the membrane potential and the Ca2+ entry in association with cell proliferation. However, the relevance of KC3.1 channels in cancer prognosis as well as the molecular mechanism of Ca2+ entry triggered by their activation remain undetermined. Here, we show that RNAi-mediated knockdown of KCa3.1 and/or TRPC1 leads to a significant decrease in cell proliferation due to cell cycle arrest in the G1 phase. These results are consistent with the observed upregulation of both channels in synchronized cells at the end of G1 phase. Additionally, knockdown of TRPC1 suppressed the Ca2+ entry induced by 1-EBIO-mediated KCa3.1 activation, suggesting a functional cooperation between TRPC1 and KCa3.1 in the regulation of Ca2+ entry, possibly within lipid raft microdomains where these two channels seem to co-localize. We also show significant correlations between KCa3.1 mRNA expression and poor patient prognosis and unfavorable clinical breast cancer parameters by mining large datasets in the public domain. Together, these results highlight the importance of KCa3.1 in regulating the proliferative mechanisms in breast cancer cells as well as in providing a promising novel target in prognosis and therap

    Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells.

    Get PDF
    International audienceExpression of the antimicrobial peptide hCAP18/LL-37 is associated to malignancy in various cancer forms, stimulating cell migration and metastasis. We report that LL-37 induces migration of three cancer cell lines by activating the TRPV2 calcium-permeable channel and recruiting it to pseudopodia through activation of the PI3K/AKT pathway. Ca2+ entry through TRPV2 cooperated with a K+ efflux through the BKCa channel. In a panel of human breast tumors, the expression of TRPV2 and LL-37 was found to be positively correlated. The D-enantiomer of LL-37 showed identical effects as the L-peptide, suggesting that no binding to a specific receptor was involved. LL-37 attached to caveolae and pseudopodia membranes and decreased membrane fluidity, suggesting that a modification of the physical properties of the lipid membrane bilayer was the underlying mechanism of its effects

    Global bioregionalization of warm drylands based on tree assemblages mined from occurrence big data

    No full text
    • …
    corecore