37 research outputs found

    Jupiter's X-ray Emission During Solar Minimum

    Get PDF
    The 2007–2009 solar minimum was the longest of the space age. We present the first of two companion papers on Chandra and XMM‐Newton X‐ray campaigns of Jupiter through February–March 2007. We find that low solar X‐ray flux during solar minimum causes Jupiter's equatorial regions to be exceptionally X‐ray dim (0.21 GW at minimum; 0.76 GW at maximum). While the Jovian equatorial emission varies with solar cycle, the aurorae have comparably bright intervals at solar minimum and maximum. We apply atomic charge exchange models to auroral spectra and find that iogenic plasma of sulphur and oxygen ions provides excellent fits for XMM‐Newton observations. The fitted spectral S:O ratios of 0.4–1.3 are in good agreement with in situ magnetospheric S:O measurements of 0.3–1.5, suggesting that the ions that produce Jupiter's X‐ray aurora predominantly originate inside the magnetosphere. The aurorae were particularly bright on 24–25 February and 8–9 March, but these two observations exhibit very different spatial, spectral, and temporal behavior; 24–25 February was the only observation in this campaign with significant hard X‐ray bremsstrahlung from precipitating electrons, suggesting this may be rare. For 8–9 March, a bremsstrahlung component was absent, but bright oxygen O6+ lines and best‐fit models containing carbon, point to contributions from solar wind ions. This contribution is absent in the other observations. Comparing simultaneous Chandra ACIS and XMM‐Newton EPIC spectra showed that ACIS systematically underreported 0.45‐ to 0.6‐keV Jovian emission, suggesting quenching may be less important for Jupiter's atmosphere than previously thought. We therefore recommend XMM‐Newton for spectral analyses and quantifying opacity/quenching effects

    Succinic semialdehyde dehydrogenase deficiency: Lessons from mice and men

    Get PDF
    Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS–742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS–742, form the framework for human trials

    HIV-1 superinfection results in broad polyclonal neutralizing antibodies

    Get PDF
    <div><p>HIV-1 vaccines designed to date have failed to elicit neutralizing antibodies (Nabs) that are capable of protecting against globally diverse HIV-1 subtypes. One relevant setting to study the development of a strong, cross-reactive Nab response is HIV-1 superinfection (SI), defined as sequential infections from different source partners. SI has previously been shown to lead to a broader and more potent Nab response when compared to single infection, but it is unclear whether SI also impacts epitope specificity and if the epitopes targeted after SI differ from those targeted after single infection. Here the post-SI Nab responses were examined from 21 Kenyan women collectively exposed to subtypes A, C, and D and superinfected after a median time of ~1.07 years following initial infection. Plasma samples chosen for analysis were collected at a median time point ~2.72 years post-SI. Because previous studies of singly infected populations with broad and potent Nab responses have shown that the majority of their neutralizing activity can be mapped to 4 main epitopes on the HIV-1 Envelope, we focused on these targets, which include the CD4-binding site, a V1/V2 glycan, the N332 supersite in V3, and the membrane proximal external region of gp41. Using standard epitope mapping techniques that were applied to the previous cohorts, the present study demonstrates that SI did not induce a dominant Nab response to any one of these epitopes in the 21 women. Computational sera delineation analyses also suggested that 20 of the 21 superinfected women’s Nab responses could not be ascribed a single specificity with high confidence. These data are consistent with a model in which SI with diverse subtypes promotes the development of a broad polyclonal Nab response, and thus would provide support for vaccine designs using multivalent HIV immunogens to elicit a diverse repertoire of Nabs.</p></div

    The rise of consumer health wearables: promises and barriers

    Get PDF
    Will consumer wearable technology ever be adopted or accepted by the medical community? Patients and practitioners regularly use digital technology (e.g., thermometers and glucose monitors) to identify and discuss symptoms. In addition, a third of general practitioners in the United Kingdom report that patients arrive with suggestions for treatment based on online search results. However, consumer health wearables are predicted to become the next “Dr Google.” One in six (15%) consumers in the United States currently uses wearable technology, including smartwatches or fitness bands. While 19 million fitness devices are likely to be sold this year, that number is predicted to grow to 110 million in 2018. As the line between consumer health wearables and medical devices begins to blur, it is now possible for a single wearable device to monitor a range of medical risk factors. Potentially, these devices could give patients direct access to personal analytics that can contribute to their health, facilitate preventive care, and aid in the management of ongoing illness. However, how this new wearable technology might best serve medicine remains unclea

    Advancing the global public health agenda for NAFLD: a consensus statement

    Get PDF

    The role of war in deep transitions: exploring mechanisms, imprints and rules in sociotechnical systems

    Get PDF
    This paper explores in what ways the two world wars influenced the development of sociotechnical systems underpinning the culmination of the first deep transition. The role of war is an underexplored aspect in both the Techno-Economic Paradigms (TEP) approach and the Multi-level perspective (MLP) which form the two key conceptual building blocks of the Deep Transitions (DT) framework. Thus, we develop a conceptual approach tailored to this particular topic which integrates accounts of total war and mechanisms of war from historical studies and imprinting from organisational studies with the DT framework’s attention towards rules and meta-rules. We explore in what ways the three sociotechnical systems of energy, food, and transport were affected by the emergence of new demand pressures and logistical challenges during conditions of total war; how war impacted the directionality of sociotechnical systems; the extent to which new national and international policy capacities emerged during wartime in the energy, food, and transport systems; and the extent to which these systems were influenced by cooperation and shared sacrifice under wartime conditions. We then explore what lasting changes were influenced by the two wars in the energy, food, and transport systems across the transatlantic zone. This paper seeks to open up a hitherto neglected area in analysis on sociotechnical transitions and we discuss the importance of further research that is attentive towards entanglements of warfare and the military particularly in the field of sustainability transitions

    HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn's Disease

    Get PDF
    Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies.This article is freely available via Open Access. Click on Publisher URL to access the full-text

    Jupiter's X‐rays 2007 Part 1: Jupiter's X‐ray Emission During Solar Minimum

    No full text
    The 2007‐2009 solar minimum was the longest of the space age. We present the first of two companion papers on Chandra and XMM‐Newton X‐ray campaigns of Jupiter through February‐March 2007. We find that low solar X‐ray flux during solar minimum causes Jupiter's equatorial regions to be exceptionally X‐ray dim (0.21GW at minimum; 0.76GW at maximum). While the Jovian equatorial emission varies with solar cycle, the aurorae have comparably bright intervals at solar minimum and maximum. We apply atomic charge exchange models to auroral spectra and find that iogenic plasma of sulphur and oxygen ions provides excellent fits for XMM‐Newton observations. The fitted spectral S:O ratios of 0.4‐1.3 are in good agreement with in‐situ magnetospheric S:O measurements of 0.3‐1.5, suggesting that the ions that produce Jupiter's X‐ray aurora predominantly originate inside the magnetosphere. The aurorae were particularly bright on Feb 24‐25 and March 8‐9, but these two observations exhibit very different spatial, spectral and temporal behaviour. 24‐25 Feb was the only observation in this campaign with significant hard X‐ray bremsstrahlung from precipitating electrons, suggesting this may be rare. For 8‐9 March, a bremsstrahlung component was absent, but bright oxygen O6+ lines and best‐fit models containing carbon, point to contributions from solar wind ions. This contribution is absent in the other observations. Comparing simultaneous Chandra ACIS and XMM‐Newton EPIC spectra showed that ACIS systematically under‐reported 0.45‐0.6keV Jovian emission, suggesting quenching may be less important for Jupiter's atmosphere than previously thought. We therefore recommend XMM‐Newton for spectral analyses and quantifying opacity/quenching effects
    corecore