1,004 research outputs found
Evolution of a predator-induced, nonlinear reaction norm
Inducible, anti-predator traits are a classic example of phenotypic plasticity.
Their evolutionary dynamics depend on their genetic basis, the historical pattern
of predation risk that populations have experienced and current selection
gradients. When populations experience predators with contrasting hunting
strategies and size preferences, theory suggests contrasting micro-evolutionary
responses to selection. Daphnia pulex is an ideal species to explore the microevolutionary
response of anti-predator traits because they face heterogeneous
predation regimes, sometimes experiencing only invertebrate midge predators
and other times experiencing vertebrate fish and invertebrate midge predators.
We explored plausible patterns of adaptive evolution of a predator-induced
morphological reaction norm. We combined estimates of selection gradients
that characterize the various habitats that D. pulex experiences with detail on
the quantitative genetic architecture of inducible morphological defences.
Our data reveal a fine scale description of daphnid defensive reaction norms,
and a strong covariance between the sensitivity to cues and the maximum
response to cues. By analysing the response of the reaction norm to plausible,
predator-specific selection gradients, we show how in the context of this covariance,
micro-evolution may be more uniform than predicted from size-selective
predation theory. Our results show how covariance between the sensitivity to
cues and the maximum response to cues for morphological defence can shape
the evolutionary trajectory of predator-induced defences in D. pulex
Gluon self-energy in a two-flavor color superconductor
The energy and momentum dependence of the gluon self-energy is investigated
in a color superconductor with two flavors of massless quarks. The presence of
a color-superconducting quark-quark condensate modifies the gluon self-energy
for energies which are of the order of the gap parameter. For gluon energies
much larger than the gap, the self-energy assumes the form given by the
standard hard-dense loop approximation. It is shown that this modification of
the gluon self-energy does not affect the magnitude of the gap to leading and
subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require
Drum vortons in high density QCD
Recently it was shown that high density QCD supports of number of topological
defects. In particular, there are U(1)_Y strings that arise due to K^0
condensation that occurs when the strange quark mass is relatively large. The
unique feature of these strings is that they possess a nonzero K^+ condensate
that is trapped on the core. In the following we will show that these strings
(with nontrivial core structure) can form closed loops with conserved charge
and currents trapped on the string worldsheet. The presence of conserved
charges allows these topological defects, called vortons, to carry angular
momentum, which makes them classically stable objects. We also give arguments
demonstrating that vortons carry angular momentum very efficiently (in terms of
energy per unit angular momentum) such that they might be the important degrees
of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review
Induced Universal Properties and Deconfinement
We propose a general strategy to determine universal properties induced by a
nearby phase transition on a non-order parameter field. A general
renormalizable Lagrangian is used, which contains the order parameter and a
non-order parameter field, and respects all the symmetries present. We
investigate the case in which the order parameter field depends only on space
coordinates and the case in which this field is also time dependent. We find
that the spatial correlators of the non-order parameter field, in both cases,
are infrared dominated and can be used to determine properties of the phase
transition. We predict a universal behavior for the screening mass of a generic
singlet field, and show how to extract relevant information from such a
quantity. We also demonstrate that the pole mass of the non-order parameter
field is not infrared sensitive. Our results can be applied to any continuous
phase transition. As an example we consider the deconfining transition in pure
Yang-Mills theory, and show that our findings are supported by lattice data.
Our analysis suggests that monitoring the spatial correlators of different
hadron species, more specifically the derivatives of these, provides an
efficient and sufficient way to experimentally uncover the deconfining phase
transition and its features.Comment: Added computational details and improved the text. The results are
unchange
One million years of climate-driven rock uplift rate variation on the Wasatch Fault revealed by fluvial topography
Displacement along the Wasatch Fault, Utah, has created the Wasatch Range. Owing to its topographic prominence, location on the eastern boundary of the Basin and Range, presently active fault slip, and proximity to Utah’s largest cities, the range and fault have garnered much attention. On the 102–103 year timescale, the behavior, displacement and seismic history of the Wasatch Fault has been well categorized in order to assess seismic hazard. On the 107 year timescale, the rock uplift rate history of the Wasatch range has also been resolved using thermochronometric data, owing to its importance in inferring the history of extension in the western US. However, little data exists that bridges the gap between these two timescales. Here, we infer an approximately 1 Ma rock uplift rate history from analysis of three river networks located in the center of the range. Our recovered rock uplift rate histories evidence periodic changes to rock uplift on the Wasatch Fault, that coincide with climate driven filling and unfilling of lakes in the Bonnneville Basin. To ensure our rock uplift rate histories are robust, we use field data and previously published cosmogenic 10Be erosion rate data to tightly constrain the erodibility parameter, and investigate an appropriate value for the slope exponent of the stream power model, n. We use our river network inversion to reconcile estimates of erodibility from a number of methodologies and show that the contrast between bedrock and bedload strength is an important factor that determines erodibility
An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning
An anthropic principle has made it possible to answer the difficult question
of why the observable value of cosmological constant (
GeV) is so disconcertingly tiny compared to predicted value of vacuum
energy density GeV. Unfortunately, there is a
darker side to this argument, as it consequently leads to another absurd
prediction: that the probability to observe the value for randomly
selected observer exactly equals to 1. We'll call this controversy an infrared
divergence problem. It is shown that the IRD prediction can be avoided with the
help of a Linde-Vanchurin {\em singular runaway measure} coupled with the
calculation of relative Bayesian probabilities by the means of the {\em
doomsday argument}. Moreover, it is shown that while the IRD problem occurs for
the {\em prediction stage} of value of , it disappears at the {\em
explanatory stage} when has already been measured by the observer.Comment: 9 pages, RevTe
Low Energy Theory for 2 flavors at High Density QCD
We construct the effective Lagrangian describing the low energy excitations
for Quantum Chromodynamics with two flavors at high density. The non-linear
realization framework is employed to properly construct the low energy
effective theory. The light degrees of freedom, as required by 't Hooft anomaly
conditions, contain massless fermions which we properly include in the
effective Lagrangian. We also provide a discussion of the linearly realized
Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.
Instanton Effects in QCD at High Baryon Density
We study instanton effects in QCD at very high baryon density. In this regime
instantons are suppressed by a large power of , where
is the QCD scale parameter and is the baryon chemical
potential. Instantons are nevertheless important because they contribute to
several physical observables that vanish to all orders in perturbative QCD. We
study, in particular, the chiral condensate and its contribution to the masses of Goldstone bosons in the CFL phase of QCD
with flavors. We find that at densities , where
is the density of nuclear matter, the result is dominated by large
instantons and subject to considerable uncertainties. We suggest that these
uncertainties can be addressed using lattice calculations of the instanton
density and the pseudoscalar diquark mass in QCD with two colors. We study the
topological susceptibility and Witten-Veneziano type mass relations in both
and QCD.Comment: 27 pages, 8 figures, minor revision
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
Gravitational collapse of a Hagedorn fluid in Vaidya geometry
The gravitational collapse of a high-density null charged matter fluid,
satisfying the Hagedorn equation of state, is considered in the framework of
the Vaidya geometry. The general solution of the gravitational field equations
can be obtained in an exact parametric form. The conditions for the formation
of a naked singularity, as a result of the collapse of the compact object, are
also investigated. For an appropriate choice of the arbitrary integration
functions the null radial outgoing geodesic, originating from the shell
focussing central singularity, admits one or more positive roots. Hence a
collapsing Hagedorn fluid could end either as a black hole, or as a naked
singularity. A possible astrophysical application of the model, to describe the
energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.
- …