967 research outputs found

    Evolution of a predator-induced, nonlinear reaction norm

    Get PDF
    Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the microevolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex

    Gluon self-energy in a two-flavor color superconductor

    Get PDF
    The energy and momentum dependence of the gluon self-energy is investigated in a color superconductor with two flavors of massless quarks. The presence of a color-superconducting quark-quark condensate modifies the gluon self-energy for energies which are of the order of the gap parameter. For gluon energies much larger than the gap, the self-energy assumes the form given by the standard hard-dense loop approximation. It is shown that this modification of the gluon self-energy does not affect the magnitude of the gap to leading and subleading order in the weak-coupling limit.Comment: 21 pages, 6 figures, RevTeX, aps and epsfig style files require

    Drum vortons in high density QCD

    Get PDF
    Recently it was shown that high density QCD supports of number of topological defects. In particular, there are U(1)_Y strings that arise due to K^0 condensation that occurs when the strange quark mass is relatively large. The unique feature of these strings is that they possess a nonzero K^+ condensate that is trapped on the core. In the following we will show that these strings (with nontrivial core structure) can form closed loops with conserved charge and currents trapped on the string worldsheet. The presence of conserved charges allows these topological defects, called vortons, to carry angular momentum, which makes them classically stable objects. We also give arguments demonstrating that vortons carry angular momentum very efficiently (in terms of energy per unit angular momentum) such that they might be the important degrees of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review

    Induced Universal Properties and Deconfinement

    Full text link
    We propose a general strategy to determine universal properties induced by a nearby phase transition on a non-order parameter field. A general renormalizable Lagrangian is used, which contains the order parameter and a non-order parameter field, and respects all the symmetries present. We investigate the case in which the order parameter field depends only on space coordinates and the case in which this field is also time dependent. We find that the spatial correlators of the non-order parameter field, in both cases, are infrared dominated and can be used to determine properties of the phase transition. We predict a universal behavior for the screening mass of a generic singlet field, and show how to extract relevant information from such a quantity. We also demonstrate that the pole mass of the non-order parameter field is not infrared sensitive. Our results can be applied to any continuous phase transition. As an example we consider the deconfining transition in pure Yang-Mills theory, and show that our findings are supported by lattice data. Our analysis suggests that monitoring the spatial correlators of different hadron species, more specifically the derivatives of these, provides an efficient and sufficient way to experimentally uncover the deconfining phase transition and its features.Comment: Added computational details and improved the text. The results are unchange

    One million years of climate-driven rock uplift rate variation on the Wasatch Fault revealed by fluvial topography

    Get PDF
    Displacement along the Wasatch Fault, Utah, has created the Wasatch Range. Owing to its topographic prominence, location on the eastern boundary of the Basin and Range, presently active fault slip, and proximity to Utah’s largest cities, the range and fault have garnered much attention. On the 102–103 year timescale, the behavior, displacement and seismic history of the Wasatch Fault has been well categorized in order to assess seismic hazard. On the 107 year timescale, the rock uplift rate history of the Wasatch range has also been resolved using thermochronometric data, owing to its importance in inferring the history of extension in the western US. However, little data exists that bridges the gap between these two timescales. Here, we infer an approximately 1 Ma rock uplift rate history from analysis of three river networks located in the center of the range. Our recovered rock uplift rate histories evidence periodic changes to rock uplift on the Wasatch Fault, that coincide with climate driven filling and unfilling of lakes in the Bonnneville Basin. To ensure our rock uplift rate histories are robust, we use field data and previously published cosmogenic 10Be erosion rate data to tightly constrain the erodibility parameter, and investigate an appropriate value for the slope exponent of the stream power model, n. We use our river network inversion to reconcile estimates of erodibility from a number of methodologies and show that the contrast between bedrock and bedload strength is an important factor that determines erodibility

    An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning

    Full text link
    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ1047\Lambda\sim 10^{-47} GeV4{}^4) is so disconcertingly tiny compared to predicted value of vacuum energy density ρSUSY1012\rho_{SUSY}\sim 10^{12} GeV4{}^4. Unfortunately, there is a darker side to this argument, as it consequently leads to another absurd prediction: that the probability to observe the value Λ=0\Lambda=0 for randomly selected observer exactly equals to 1. We'll call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a Linde-Vanchurin {\em singular runaway measure} coupled with the calculation of relative Bayesian probabilities by the means of the {\em doomsday argument}. Moreover, it is shown that while the IRD problem occurs for the {\em prediction stage} of value of Λ\Lambda, it disappears at the {\em explanatory stage} when Λ\Lambda has already been measured by the observer.Comment: 9 pages, RevTe

    Low Energy Theory for 2 flavors at High Density QCD

    Get PDF
    We construct the effective Lagrangian describing the low energy excitations for Quantum Chromodynamics with two flavors at high density. The non-linear realization framework is employed to properly construct the low energy effective theory. The light degrees of freedom, as required by 't Hooft anomaly conditions, contain massless fermions which we properly include in the effective Lagrangian. We also provide a discussion of the linearly realized Lagrangian.Comment: 17 pages, RevTeX format, references added. To appear in Phys. Rev.

    Instanton Effects in QCD at High Baryon Density

    Get PDF
    We study instanton effects in QCD at very high baryon density. In this regime instantons are suppressed by a large power of (ΛQCD/μ)(\Lambda_{QCD}/\mu), where ΛQCD\Lambda_{QCD} is the QCD scale parameter and μ\mu is the baryon chemical potential. Instantons are nevertheless important because they contribute to several physical observables that vanish to all orders in perturbative QCD. We study, in particular, the chiral condensate and its contribution mGB2mm_{GB}^2\sim m to the masses of Goldstone bosons in the CFL phase of QCD with Nf=3N_f=3 flavors. We find that at densities ρ(510)ρ0\rho\sim (5-10) \rho_0, where ρ0\rho_0 is the density of nuclear matter, the result is dominated by large instantons and subject to considerable uncertainties. We suggest that these uncertainties can be addressed using lattice calculations of the instanton density and the pseudoscalar diquark mass in QCD with two colors. We study the topological susceptibility and Witten-Veneziano type mass relations in both Nc=2N_c=2 and Nc=3N_c=3 QCD.Comment: 27 pages, 8 figures, minor revision

    Constraint methods for determining pathways and free energy of activated processes

    Full text link
    Activated processes from chemical reactions up to conformational transitions of large biomolecules are hampered by barriers which are overcome only by the input of some free energy of activation. Hence, the characteristic and rate-determining barrier regions are not sufficiently sampled by usual simulation techniques. Constraints on a reaction coordinate r have turned out to be a suitable means to explore difficult pathways without changing potential function, energy or temperature. For a dense sequence of values of r, the corresponding sequence of simulations provides a pathway for the process. As only one coordinate among thousands is fixed during each simulation, the pathway essentially reflects the system's internal dynamics. From mean forces the free energy profile can be calculated to obtain reaction rates and insight in the reaction mechanism. In the last decade, theoretical tools and computing capacity have been developed to a degree where simulations give impressive qualitative insight in the processes at quantitative agreement with experiments. Here, we give an introduction to reaction pathways and coordinates, and develop the theory of free energy as the potential of mean force. We clarify the connection between mean force and constraint force which is the central quantity evaluated, and discuss the mass metric tensor correction. Well-behaved coordinates without tensor correction are considered. We discuss the theoretical background and practical implementation on the example of the reaction coordinate of targeted molecular dynamics simulation. Finally, we compare applications of constraint methods and other techniques developed for the same purpose, and discuss the limits of the approach

    Gravitational collapse of a Hagedorn fluid in Vaidya geometry

    Get PDF
    The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity, as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity, admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.
    corecore