Recently it was shown that high density QCD supports of number of topological
defects. In particular, there are U(1)_Y strings that arise due to K^0
condensation that occurs when the strange quark mass is relatively large. The
unique feature of these strings is that they possess a nonzero K^+ condensate
that is trapped on the core. In the following we will show that these strings
(with nontrivial core structure) can form closed loops with conserved charge
and currents trapped on the string worldsheet. The presence of conserved
charges allows these topological defects, called vortons, to carry angular
momentum, which makes them classically stable objects. We also give arguments
demonstrating that vortons carry angular momentum very efficiently (in terms of
energy per unit angular momentum) such that they might be the important degrees
of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review