690 research outputs found

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    On the massive wave equation on slowly rotating Kerr-AdS spacetimes

    Full text link
    The massive wave equation gψαΛ3ψ=0\Box_g \psi - \alpha\frac{\Lambda}{3} \psi = 0 is studied on a fixed Kerr-anti de Sitter background (M,gM,a,Λ)(\mathcal{M},g_{M,a,\Lambda}). We first prove that in the Schwarzschild case (a=0), ψ\psi remains uniformly bounded on the black hole exterior provided that α<9/4\alpha < {9/4}, i.e. the Breitenlohner-Freedman bound holds. Our proof is based on vectorfield multipliers and commutators: The usual energy current arising from the timelike Killing vector field TT (which fails to be non-negative pointwise) is shown to be non-negative with the help of a Hardy inequality after integration over a spacelike slice. In addition to TT, we construct a vectorfield whose energy identity captures the redshift producing good estimates close to the horizon. The argument is finally generalized to slowly rotating Kerr-AdS backgrounds. This is achieved by replacing the Killing vectorfield T=tT=\partial_t with K=t+λϕK=\partial_t + \lambda \partial_\phi for an appropriate λa\lambda \sim a, which is also Killing and--in contrast to the asymptotically flat case--everywhere causal on the black hole exterior. The separability properties of the wave equation on Kerr-AdS are not used. As a consequence, the theorem also applies to spacetimes sufficiently close to the Kerr-AdS spacetime, as long as they admit a causal Killing field KK which is null on the horizon.Comment: 1 figure; typos corrected, references added, introduction revised; to appear in CM

    Partial wave analysiss of pbar-p -> piminus-piplus, pizero-pizero, eta-eta and eta-etaprime

    Full text link
    A partial wave analysis is presented of Crystal Barrel data on pbar-p -> pizero-pizero, eta-eta and eta-etaprime from 600 to 1940 MeV/c, combined with earlier data on d\sigma /d\Omega and P for pbar-p->piminus-piplus. The following s-channel I=0 resonances are identified: (i) J^{PC} = 5^{--} with mass and width (M,\Gamma) at (2295+-30,235^{+65}_{-40}) MeV, (ii) J^{PC} = 4^{++} at (2020+-12, 170+-15) MeV and (2300+-25, 270+-50) MeV, (iii) 3D3 JPC = 3^{--} at (1960+-15, 150+-25) MeV and (2210+-4$, 360+-55) MeV, and a 3G3 state at (2300 ^{+50}_{-80}, 340+-150) MeV, (iv) JPC = 2^{++} at (1910+-30, 260+-40) MeV, (2020+-30, 275+-35) MeV, (2230+-30, 245+-45) MeV, and (2300+-35, 290+-50) MeV, (v) JPC = 1^{--} at (2005+-40, 275+-75) MeV, and (2165+-40, 160 ^{+140}_{-70}) MeV, and (vi) JPC = 0^{++} at (2005+-30, 305+-50) MeV, (2105+-15, 200+-25) MeV, and (2320+-30, 175+-45) MeV. In addition, there is a less well defined 6^{++} resonance at 2485+-40 MeV, with Gamma = 410+-90 MeV. For every JP, almost all these resonances lie on well defined linear trajectories of mass squared v. excitation number. The slope is 1.10+-0.03 Gev^2 per excitation. The f_0(2105) has strong coupling to eta-\eta, but much weaker coupling to pizero-pizero. Its flavour mixing angle between q-qbar and s-sbar is (59-71.6)deg, i.e. dominant decays to s-sbar. Such decays and its strong production in pbar-p interactions strongly suggest exotic character.Comment: Makes available the combined fit to Crystal Barrel data on pbar-p -> 2-body final states. 29 pages, 11 figures. Typo corrected in version

    Ultrasound-guided out-of-plane (OOP) adductor canal continuous catheter placement compared to in-plane (IP) placement in total knee arthroplasty: a randomized, single blinded, pilot clinical trial

    Get PDF
    Background: Adductor canal continuous catheters (ACCCs) have largely replaced femoral nerve continuous catheters for providing analgesia after total knee arthroplasty. Both have similar analgesic efficacy, but ACCCs preserve quadricep strength and facilitate patient mobility more quickly. We hypothesized that placing the ACCC using an out of-plane (OOP) technique would decrease pain scores and opioid use due to parallel alignment with the saphenous nerve when compared to the in-plane (IP) technique. Methods: Sixty-nine patients undergoing total knee arthroplasty were randomized to either the IP or OOP technique for ultrasound-guided ACCC. The primary outcomes of the investigation were hospital length of stay, total opioid consumption, and average post-operative pain score. Secondary outcomes included total ondansetron consumption, total acetaminophen consumption, and the incidence of anti-emetic drug use. Results: There were no significant differences between the IP and the OOP groups for any of the measured variables: hospital length of stay, pre-operative pain score, average post-operative pain score, total opioid consumption, total ondansetron consumption, total acetaminophen consumption, and the incidence of anti-emetic drug administration. Conclusion: The OOP ACCC technique did not provide superior analgesia or decrease opioid consumption when compared to the IP ACCC technique. Both techniques can be used interchangeably for analgesia status-post TKA

    Complex Kerr Geometry and Nonstationary Kerr Solutions

    Full text link
    In the frame of the Kerr-Schild approach, we consider the complex structure of Kerr geometry which is determined by a complex world line of a complex source. The real Kerr geometry is represented as a real slice of this complex structure. The Kerr geometry is generalized to the nonstationary case when the current geometry is determined by a retarded time and is defined by a retarded-time construction via a given complex world line of source. A general exact solution corresponding to arbitrary motion of a spinning source is obtained. The acceleration of the source is accompanied by a lightlike radiation along the principal null congruence. It generalizes to the rotating case the known Kinnersley class of "photon rocket" solutions.Comment: v.3, revtex, 16 pages, one eps-figure, final version (to appear in PRD), added the relation to twistors and algorithm of numerical computations, English is correcte

    Analysing the elasticity difference tensor of general relativity

    Get PDF
    The elasticity difference tensor, used in [1] to describe elasticity properties of a continuous medium filling a space-time, is here analysed from the point of view of the space-time connection. Principal directions associated with this tensor are compared with eigendirections of the material metric. Examples concerning spherically symmetric and axially symmetric space-times are then presented.Comment: 17 page

    A Symmetry-induced Model of Elliptical Galaxy Patterns

    Full text link
    S\'ersic (1968) generalized the de Vaucouleurs law which follows the projected (observed) one dimensional radial profile of elliptical galaxies closely and Dehnen (1993) proposed an analytical formula of the 3-dimensional light distributions whose projected line profile resembles the de Vaucouleurs law. This paper is involved to recover the Dehnen model and generalize the model to account for galaxy elliptical shapes by means of curvilinear coordinate systems and employing a symmetry principle. The symmetry principle maps an orthogonal coordinate system to a light distribution pattern. The coordinate system for elliptical galaxy patterns turns out to be the one which is formed by the complex-plane reciprocal transformation Z=1/WZ=1/W. The resulting spatial (3-dimensional) light distribution is spherically symmetric and has infinite gradient at its centre, which is called spherical-nucleus solution and is used to model galaxy central area. We can make changes of the coordinate system by cutting out some column areas of its definition domain, the areas containing the galaxy centre. The resulting spatial (3-dimensional) light distributions are axisymmetric or triaxial and have zero gradient at the centre, which are called elliptical-shape solutions and are used to model global elliptical patterns. The two types of logarithmic light distributions are added together to model full elliptical galaxy patterns. The model is a generalization of the Dehnen model. One of the elliptical-shape solutions permits realistic numerical calculation and is fitted to all R-band elliptical images from the Frei {\it et al.}(1996)'s galaxy sample. The fitting is satisfactory. This suggests that elliptical galaxy patterns can be represented in terms of a few basic parameters.Comment: 20 pages, 7 figure

    An orientifold of adS_5xT^11 with D7-branes, the associated alpha'^2- corrections and their role in the dual N=1 Sp(2N+2M)xSp(2N) gauge theory

    Full text link
    We study the N=1 Sp(2N+2M)xSp(2N) gauge theory on a stack of N physical and M fractional D3-branes in the background of an orientifolded conifold. The gravity dual is a type IIB orientifold of adS_5xT^11 (with certain background fluxes turned on) containing an O7-plane and 8 D7-branes. In the conformal case (M=0), we argue that the alpha'^2-corrections localized on the 8 D7-branes and the O7-plane should give vanishing contributions to the supergravity equations of motion for the bulk fields. In the cascading case (M not equal to 0), we argue that the alpha'^2-terms give rise to corrections which in the dual Sp(2N+2M)xSp(2N) gauge theory can be interpreted as corrections to the anomalous dimensions of the matter fields.Comment: 28 pages, 3 figures, LaTeX; v2: references added; v3: minor change

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
    corecore