534 research outputs found

    Human-carnivore relations: conflicts, tolerance and coexistence in the American West

    Get PDF
    Carnivore and humans live in proximity due to carnivore recovery efforts and ongoing human encroachment into carnivore habitats globally. The American West is a region that uniquely exemplifies these human-carnivore dynamics, however, it is unclear how the research community here integrates social and ecological factors to examine human-carnivore relations. Therefore, strategies promoting human-carnivore coexistence are urgently needed. We conducted a systematic review on human-carnivore relations in the American West covering studies between 2000 and 2018. We first characterized human-carnivore relations across states of the American West. Second, we analyzed similarities and dissimilarities across states in terms of coexistence, tolerance, number of ecosystem services and conflicts mentioned in literature. Third, we used Bayesian modeling to quantify the effect of social and ecological factors influencing the scientific interest on coexistence, tolerance, ecosystem services and conflicts. Results revealed some underlying biases in human-carnivore relations research. Colorado and Montana were the states where the highest proportion of studies were conducted with bears and wolves the most studied species. Non-lethal management was the most common strategy to mitigate conflicts. Overall, conflicts with carnivores were much more frequently mentioned than benefits. We found similarities among Arizona, California, Utah, and New Mexico according to how coexistence, tolerance, services and conflicts are addressed in literature. We identified percentage of federal/private land, carnivore family, social actors, and management actions, as factors explaining how coexistence, tolerance, conflicts and services are addressed in literature. We provide a roadmap to foster tolerance towards carnivores and successful coexistence strategies in the American West based on four main domains, (1) the dual role of carnivores as providers of both beneficial and detrimental contributions to people, (2) social-ecological factors underpinning the provision of beneficial and detrimental contributions, (3) the inclusion of diverse actors, and (4) cross-state collaborative management

    Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh

    Get PDF
    Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide

    Under pressure: Response urgency modulates striatal and insula activity during decision-making under risk

    Get PDF
    When deciding whether to bet in situations that involve potential monetary loss or gain (mixed gambles), a subjective sense of pressure can influence the evaluation of the expected utility associated with each choice option. Here, we explored how gambling decisions, their psychophysiological and neural counterparts are modulated by an induced sense of urgency to respond. Urgency influenced decision times and evoked heart rate responses, interacting with the expected value of each gamble. Using functional MRI, we observed that this interaction was associated with changes in the activity of the striatum, a critical region for both reward and choice selection, and within the insula, a region implicated as the substrate of affective feelings arising from interoceptive signals which influence motivational behavior. Our findings bridge current psychophysiological and neurobiological models of value representation and action-programming, identifying the striatum and insular cortex as the key substrates of decision-making under risk and urgency

    Ultrafast optical control of entanglement between two quantum dot spins

    Full text link
    The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.Comment: 24 pages, 5 figure

    Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes

    Get PDF
    This Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer. Mesenchymal cells which line the cochlear perilymphatic compartment can be selectively transfected with (naked) plasmid DNA using array - based gene electrotransfer, termed ‘close-field electroporation’. This technology is able to drive expression of brain derived neurotrophic factor (BDNF) in the deafened guinea pig model, causing re-growth of the spiral ganglion peripheral neurites towards the mesenchymla cells, and hence into close proximity with cochlear implant electrodes within scala tympani. This was associated with functional enhancement of the cochlear implant neural interface (lower neural recruitment thresholds and expanded dynamic range, measured using electrically - evoked auditory brainstem responses). The basis for the efficiency of close-field electroporation arises from the compression of the electric field in proximity to the ganged cochlear implant electrodes. The regions close to the array with highest field strength corresponded closely to the distribution of bioreporter cells (adherent human embryonic kidney (HEK293)) expressing green fluorescent reporter protein (GFP) following gene electrotransfer. The optimization of the gene electrotransfer parameters using this cell-based model correlated closely with in vitro and in vivo cochlear gene delivery outcomes. The migration of the cochlear implant electrode array-based gene electrotransfer platform towards a clinical trial for neurotrophin-based enhancement of cochlear implants is supported by availability of a novel regulatory compliant mini-plasmid DNA backbone (pFAR4; plasmid Free of Antibiotic Resistance v.4) which could be used to package a ‘humanized’ neurotrophin expression cassette. A reporter cassette packaged into pFAR4 produced prominent GFP expression in the guinea pig basal turn perilymphatic scalae. More broadly, close-field gene electrotransfer may lend itself to a spectrum of potential DNA therapeutics applications benefitting from titratable, localised, delivery of naked DNA, for gene augmentation, targeted gene regulation, or gene substitution strategies

    Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    Get PDF
    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates [2], single-photon transistors [10], and efficient photonic cluster state generation [11]

    Activity Increase Despite Arthritis (AÏDA): design of a Phase II randomised controlled trial evaluating an active management booklet for hip and knee osteoarthritis [ISRCTN24554946]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip and knee osteoarthritis is a common cause of pain and disability, which can be improved by exercise interventions. However, regular exercise is uncommon in this group because the low physical activity level in the general population is probably reduced even further by pain related fear of movement. The best method of encouraging increased activity in this patient group is not known. A booklet has been developed for patients with hip or knee osteoarthritis. It focuses on changing disadvantageous beliefs and encouraging increased physical activity.</p> <p>Methods/Design</p> <p>This paper describes the design of a Phase II randomised controlled trial (RCT) to test the effectiveness of this new booklet for patients with hip and knee osteoarthritis in influencing illness and treatment beliefs, and to assess the feasibility of conducting a larger definitive RCT in terms of health status and exercise behaviour. A computerised search of four general medical practice patients' record databases will identify patients older than 50 years of age who have consulted with hip or knee pain in the previous twelve months. A random sample of 120 will be invited to participate in the RCT comparing the new booklet with a control booklet, and we expect 100 to return final questionnaires. This trial will assess the feasibility of recruitment and randomisation, the suitability of the control intervention and outcome measurement tools, and will provide an estimate of effect size. Outcomes will include beliefs about hip and knee pain, beliefs about exercise, fear avoidance, level of physical activity, health status and health service costs. They will be measured at baseline, one month and three months.</p> <p>Discussion</p> <p>We discuss the merits of testing effectiveness in a phase II trial, in terms of intermediate outcome measures, whilst testing the processes for a larger definitive trial. We also discuss the advantages and disadvantages of testing the psychometric properties of the primary outcome measures concurrently with the trial.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN24554946</p

    Multi-wave coherent control of a solid-state single emitter

    Get PDF
    The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.PostprintPeer reviewe

    High heterogeneity in Plasmodium falciparum risk illustrates the need for detailed mapping to guide resource allocation: a new malaria risk map of the Lao People's Democratic Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate information on the geographical distribution of malaria is important for efficient resource allocation. The Lao People's Democratic Republic has experienced a major decline in malaria morbidity and mortality in the past decade. However, efforts to respond effectively to these changes have been impeded by lack of detailed data on malaria distribution. In 2008, a countrywide survey on <it>Plasmodium falciparum </it>diagnosed in health centres and villages was initiated to develop a detailed <it>P. falciparum </it>risk map with the aim to identify priority areas for malaria control, estimate population at risk, and guide resource allocation in the Lao People's Democratic Republic.</p> <p>Methods</p> <p><it>P. falciparum </it>incidence data were collected from point-referenced villages and health centres for the period 2006-2008 during a country-wide survey between December 2008 and January 2009. Using the highest recorded annual rate, continuous surfaces of <it>P. falciparum </it>incidence were produced by the inverse distance weighted interpolation technique.</p> <p>Results</p> <p>Incidence rates were obtained from 3,876 villages and 685 health centres. The risk map shows that <it>P. falciparum </it>is highly heterogeneous in the northern and central regions of the country with large areas of no transmission. In the southern part, transmission is pervasive and the risk of <it>P. falciparum </it>is high. It was estimated that 3.4 million people (60% of the population) live at risk of malaria.</p> <p>Conclusions</p> <p>This paper presents the first comprehensive malaria risk map of the Lao People's Democratic Republic based entirely on empirical data. The estimated population at risk is substantially lower than previous estimates, reflecting the presence of vast areas with focal or no malaria transmission as identified in this study. These findings provide important guidance for malaria control interventions in the Lao People's Democratic Republic, and underline the need for detailed data on malaria to accurately predict risk in countries with heterogeneous transmission.</p

    How Does Spatial Study Design Influence Density Estimates from Spatial Capture-Recapture Models?

    Get PDF
    When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR) models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km2. Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species
    corecore