2,122 research outputs found

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    LEP1 vs. Future Colliders: Effective Operators And Extended Gauge Group

    Full text link
    In an effective Lagrangian approach to physics beyond the Standard Model, it has been argued that imposing SU(2)×U(1)SU(2) \times U(1) invariance severely restricts the discovery potential of future colliders. We exhibit a possible way out in an extended gauge group context.Comment: 14 pages , CERN-TH.6573/92 ULB.TH.04/92 (phyzzx, 3 eps-figs incl.

    On the gravitational, dilatonic and axionic radiative damping of cosmic strings

    Full text link
    We study the radiation reaction on cosmic strings due to the emission of dilatonic, gravitational and axionic waves. After verifying the (on average) conservative nature of the time-symmetric self-interactions, we concentrate on the finite radiation damping force associated with the half-retarded minus half-advanced ``reactive'' fields. We revisit a recent proposal of using a ``local back reaction approximation'' for the reactive fields. Using dimensional continuation as convenient technical tool, we find, contrary to previous claims, that this proposal leads to antidamping in the case of the axionic field, and to zero (integrated) damping in the case of the gravitational field. One gets normal positive damping only in the case of the dilatonic field. We propose to use a suitably modified version of the local dilatonic radiation reaction as a substitute for the exact (non-local) gravitational radiation reaction. The incorporation of such a local approximation to gravitational radiation reaction should allow one to complete, in a computationally non-intensive way, string network simulations and to give better estimates of the amount and spectrum of gravitational radiation emitted by a cosmologically evolving network of massive strings.Comment: 48 pages, RevTex, epsfig, 1 figure; clarification of the domain of validity of the perturbative derivation of the string equations of motion, and of their renormalizabilit

    Separability of Rotational Effects on a Gravitational Lens

    Full text link
    We derive the deflection angle up to O(m2a)O(m^2a) due to a Kerr gravitational lens with mass mm and specific angular momentum aa. It is known that at the linear order in mm and aa the Kerr lens is observationally equivalent to the Schwarzschild one because of the invariance under the global translation of the center of the lens mass. We show, however, nonlinear couplings break the degeneracy so that the rotational effect becomes in principle separable for multiple images of a single source. Furthermore, it is distinguishable also for each image of an extended source and/or a point source in orbital motion. In practice, the correction at O(m2a)O(m^2a) becomes O(1010)O(10^{-10}) for the supermassive black hole in our galactic center. Hence, these nonlinear gravitational lensing effects are too small to detect by near-future observations.Comment: 12 pages (RevTeX); accepted for publication in Phys. Rev.

    Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure. Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry–based assays. CLL cells were cultured in in vitro prosurvival and proproliferative conditions to mimic microenvironmental signals in the lymphoid organs, to elucidate the mechanism of action of CR8 in quiescent and proliferating CLL cells using flow cytometry, Western blotting, and quantitative real-time PCR. Results: CR8 was 100-fold more potent at inducing apoptosis in primary CLL cells than roscovitine, both in isolated culture and stromal-coculture conditions. Importantly, CR8 induced apoptosis in CD40-ligated CLL cells and preferentially targeted actively proliferating cells within these cultures. CR8 treatment induced downregulation of the antiapoptotic proteins Mcl-1 and XIAP, through inhibition of RNA polymerase II, and inhibition of NF-κB signaling at the transcriptional level and through inhibition of the inhibitor of IκB kinase (IKK) complex, resulting in stabilization of IκBα expression. Conclusions: CR8 is a potent CDK inhibitor that subverts pivotal prosurvival and proproliferative signals present in the tumor microenvironment of CLL patient lymphoid organs. Our data support the clinical development of selective CDK inhibitors as novel therapies for CLL

    The Wahlquist-Newman solution

    Get PDF
    Based on a geometrical property which holds both for the Kerr metric and for the Wahlquist metric we argue that the Kerr metric is a vacuum subcase of the Wahlquist perfect-fluid solution. The Kerr-Newman metric is a physically preferred charged generalization of the Kerr metric. We discuss which geometric property makes this metric so special and claim that a charged generalization of the Wahlquist metric satisfying a similar property should exist. This is the Wahlquist-Newman metric, which we present explicitly in this paper. This family of metrics has eight essential parameters and contains the Kerr-Newman-de Sitter and the Wahlquist metrics, as well as the whole Pleba\'nski limit of the rotating C-metric, as particular cases. We describe the basic geometric properties of the Wahlquist-Newman metric, including the electromagnetic field and its sources, the static limit of the family and the extension of the spacetime across the horizon.Comment: LaTeX, 18 pages, no figures. Accepted for publication in Phys. Rev.

    Hall effect in the marginal Fermi liquid regime of high-Tc superconductors

    Full text link
    The detailed derivation of a theory for transport in quasi-two-dimensional metals, with small-angle elastic scattering and angle-independent inelastic scattering is presented. The transport equation is solved for a model Fermi surface representing a typical cuprate superconductor. Using the small-angle elastic and the inelastic scattering rates deduced from angle-resolved photoemission experiments, good quantitative agreement with the observed anomalous temperature dependence of the Hall angle in optimally doped cuprates is obtained, while the resistivity remains linear in temperature. The theory is also extended to the frequency-dependent complex Hall angle

    Opportunities for feeding forages to pigs in Uganda

    Get PDF
    Pigs can play an important role in risk diversification and livelihood security of many smallholder and poor households in Uganda. Women and youth/children provide most of the pigproduction labour, especially for forage collection, feeding and watering; and they are responsible for about 90% of pigs produced in Uganda. In the smallholder production systems practised both in rural and peri-urban areas, a variety of forage species are traditionally used for pig feeding, the majority of them being gathered for several hours every day. Overall, there is an overreliance on feeding crop residues, ‘weeds’ and forages both through collection and scavenging/ tethering, usually not meeting the nutritional requirements of pigs, which results in slow growth rates. Data on feeding pigs in Uganda were collected during focus group discussions and key informant interviews in three districts, Masaka, Mukono and Kamuli, during the years 2013–2014. In Uganda, there has been generally limited research on pigs and pig systems, while forage research has traditionally focused on feeding ruminants. A comprehensive literature review on feeding forages to pigs in the tropics revealed that it is mainly animal nutritionists who concern themselves with nutritional effects of forages on the animals and their suitability as pig feeds; aspects of integrating cultivated forages into crop-livestock production systems, labour requirements, gender issues, and economic returns are essentially not considered. Despite the widely recognised constraint of insufficient animal feeds, especially during dry seasons, adoption of cultivated forages in the tropics has been generally slow, and hindering factors have not been fully understood. Some cultivated forages show nutritional attributes suitable for pigs, technically making them an option to supplement pigs with farm-grown forages instead of purchased concentrates. A paradox of feeding forages to pigs in Uganda has been identified, though, that suggests a decreasing use potential of forages along a gradient from extensive (mostly rural) to intensive (more urban) smallholder systems, whereas CIAT’s Tropical Forages Program presumes an increasing forage adoption potential along a gradient from subsistence- to marketoriented smallholder systems. Investigating this paradox carefully may help better understand reasons and conditions of smallholders under which cultivated forages may be adopted or not

    Structure of the ovaries of the Nimba otter shrew, Micropotamogale lamottei, and the Madagascar hedgehog tenrec, Echinops telfairi

    Get PDF
    The otter shrews are members of the subfamily Potamogalinae within the family Tenrecidae. No description of the ovaries of any member of this subfamily has been published previously. The lesser hedgehog tenrec, Echinops telfairi, is a member of the subfamily Tenrecinae of the same family and, although its ovaries have not been described, other members of this subfamily have been shown to have ovaries with non-antral follicles. Examination of these two species illustrated that non-antral follicles were characteristic of the ovaries of both species, as was clefting and lobulation of the ovaries. Juvenile otter shrews range from those with only small follicles in the cortex to those with 300- to 400-mu m follicles similar to those seen in non-pregnant and pregnant adults. As in other species, most of the growth of the oocyte occurred when follicles had one to two layers of granulosa cells. When larger follicles became atretic in the Nimba otter shrew, hypertrophy of the theca interna produced nodules of glandular interstitial tissue. In the tenrec, the hypertrophying theca interna cells in most large follicles appeared to undergo degeneration. Both species had some follicular fluid in the intercellular spaces between the more peripheral granulosa cells. It is suggested that this fluid could aid in separation of the cumulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral follicles. Ovaries with a thin-absent tunica albuginea and follicles with small-absent antra are widespread within both the Eulipotyphla and in the Afrosoricida, suggesting that such features may represent a primitive condition in ovarian development. Lobulated and deeply crypted ovaries are found in both groups but are not as common in the Eulipotyphla making inclusion of this feature as primitive more speculative. Copyright (C) 2005 S. Karger AG, Basel

    Mass, Angular Momentum and Thermodynamics in Four-Dimensional Kerr-AdS Black Holes

    Full text link
    In this paper, the connection between the Lorentz-covariant counterterms that regularize the four-dimensional AdS gravity action and topological invariants is explored. It is shown that demanding the spacetime to have a negative constant curvature in the asymptotic region permits the explicit construction of such series of boundary terms. The orthonormal frame is adapted to appropriately describe the boundary geometry and, as a result, the boundary term can be expressed as a functional of the boundary metric, extrinsic curvature and intrinsic curvature. This choice also allows to write down the background-independent Noether charges associated to asymptotic symmetries in standard tensorial formalism. The absence of the Gibbons-Hawking term is a consequence of an action principle based on a boundary condition different than Dirichlet on the metric. This argument makes plausible the idea of regarding this approach as an alternative regularization scheme for AdS gravity in all even dimensions, different than the standard counterterms prescription. As an illustration of the finiteness of the charges and the Euclidean action in this framework, the conserved quantities and black hole entropy for four-dimensional Kerr-AdS are computed.Comment: 15 pages,no figures,few references added,JHEP forma
    corecore