Based on a geometrical property which holds both for the Kerr metric and for
the Wahlquist metric we argue that the Kerr metric is a vacuum subcase of the
Wahlquist perfect-fluid solution. The Kerr-Newman metric is a physically
preferred charged generalization of the Kerr metric. We discuss which geometric
property makes this metric so special and claim that a charged generalization
of the Wahlquist metric satisfying a similar property should exist. This is the
Wahlquist-Newman metric, which we present explicitly in this paper. This family
of metrics has eight essential parameters and contains the Kerr-Newman-de
Sitter and the Wahlquist metrics, as well as the whole Pleba\'nski limit of the
rotating C-metric, as particular cases. We describe the basic geometric
properties of the Wahlquist-Newman metric, including the electromagnetic field
and its sources, the static limit of the family and the extension of the
spacetime across the horizon.Comment: LaTeX, 18 pages, no figures. Accepted for publication in Phys. Rev.