276 research outputs found

    Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice

    Get PDF
    AIMS: Vascular disease states are associated with endothelial dysfunction and increased production of reactive oxygen species derived from NADPH oxidases. However, it remains unclear whether a primary increase in superoxide production specifically in the endothelium alters the initiation or progression of atherosclerosis. METHODS AND RESULTS: Mice overexpressing Nox2 specifically in the endothelium (Nox2-Tg) were crossed with ApoE(-/-) mice to produce Nox2-Tg ApoE(-/-) mice and ApoE(-/-) littermates. Endothelial overexpression of Nox2 in ApoE(-/-) mice did not alter blood pressure, but significantly increased vascular superoxide production compared with ApoE(-/-) littermates, measured using both lucigenin chemiluminescence and 2-hydroxyethidium production (ApoE(-/-), 19.9 ± 6.3 vs. Nox2-Tg ApoE(-/-), 47.0 ± 7.0 nmol 2-hydroxyethidium/aorta, P< 0.05). Increased endothelial superoxide production increased endothelial levels of vascular cell adhesion protein 1 and enhanced macrophage recruitment in early lesions in the aortic roots of 9-week-old mice, indicating increased atherosclerotic plaque initiation. However, endothelial-specific Nox2 overexpression did not alter native or angiotensin II-driven atherosclerosis in either the aortic root or the descending aorta. CONCLUSION: Endothelial-targeted Nox2 overexpression in ApoE(-/-) mice is sufficient to increase vascular superoxide production and increase macrophage recruitment possible via activation of endothelial cells. However, this initial increase in macrophage recruitment did not alter the progression of atherosclerosis. These results indicate that Nox-mediated reactive oxygen species signalling has important cell-specific and distinct temporal roles in the initiation and progression of atherosclerosis

    DEveloping Tests for Endometrial Cancer deTection (DETECT): protocol for a diagnostic accuracy study of urine and vaginal samples for the detection of endometrial cancer by cytology in women with postmenopausal bleeding.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-07-01, epub 2021-07-28Publication status: PublishedFunder: Wellcome TrustFunder: Department of Health; Grant(s): NIHR300650Funder: Cancer Research UK; Grant(s): C147/A25254IntroductionPostmenopausal bleeding (PMB), the red flag symptom for endometrial cancer, triggers urgent investigation by transvaginal ultrasound scan, hysteroscopy and/or endometrial biopsy. These investigations are costly, invasive and often painful or distressing for women. In a pilot study, we found that voided urine and non-invasive vaginal samples from women with endometrial cancer contain malignant cells that can be identified by cytology. The aim of the DEveloping Tests for Endometrial Cancer deTection (DETECT) Study is to determine the diagnostic test accuracy of urine and vaginal cytology for endometrial cancer detection in women with PMB.Methods and analysisThis is a multicentre diagnostic accuracy study of women referred to secondary care with PMB. Eligible women will be asked to provide a self-collected voided urine sample and a vaginal sample collected with a Delphi screener before routine clinical procedures. Pairs of specialist cytologists, blinded to participant cancer status, will assess and classify samples independently, with differences settled by consensus review or involving a third cytologist. Results will be compared with clinical outcomes from standard diagnostic tests. A sample size of 2000 women will have 80% power to establish a sensitivity of vaginal samples for endometrial cancer detection by cytology of ≥85%±7%, assuming 5% endometrial cancer prevalence. The primary objective is to determine the diagnostic accuracy of urogenital samples for endometrial cancer detection by cytology. Secondary objectives include the acceptability of urine and vaginal sampling to women.Ethics and disseminationThis study has been approved by the North West-Greater Manchester West Research Ethics Committee (16/NW/0660) and the Health Research Authority. Results will be disseminated through publication in peer-reviewed scientific journals, presentation at conferences and via charity websites.Trial registration numberISRCTN58863784

    Glucocorticoids regulate mitochondrial fatty acid oxidation in fetal cardiomyocytes

    Get PDF
    Abstract: The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. Key points: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Transforming Auxetic Metamaterials into Superhydrophobic Surfaces

    Get PDF
    Superhydrophobic materials are often inspired by nature, whereas metamaterials are engineered to have properties not usually occurring naturally. In both, the key to their unique properties is structure. Here, it is shown that a negative Poisson's ratio (auxetic) mechanical metamaterial can transform into a unique superhydrophobic material. When stretched, its surface has the counterintuitive property that it also expands in the orthogonal lateral direction. The change in the solid surface fraction as strain is applied is modeled, and it is shown that it decreases as the space between solid elements of the auxetic lattice expands. This results in a unique dependence of the superhydrophobicity on strain. Experimental models are constructed to illustrate the relationship between different states of strain and superhydrophobicity as the lattice transitions from an auxetic to a conventional structure. The findings offer a new approach to designing superhydrophobic materials for self‐cleaning surfaces, droplet transportation, droplet encapsulation, and oil–water separation

    Recording sympathetic nerve activity in conscious humans and other mammals:guidelines and the road to standardization

    Get PDF
    Over the past several decades, studies of the sympathetic nervous system in humans, sheep, rabbits, rats, and mice have substantially increased mechanistic understanding of cardiovascular function and dysfunction. Recently, interest in sympathetic neural mechanisms contributing to blood pressure control has grown, in part because of the development of devices or surgical procedures that treat hypertension by manipulating sympathetic outflow. Studies in animal models have provided important insights into physiological and pathophysiological mechanisms that are not accessible in human studies. Across species and among laboratories, various approaches have been developed to record, quantify, analyze, and interpret sympathetic nerve activity (SNA). In general, SNA demonstrates “bursting” behavior, where groups of action potentials are synchronized and linked to the cardiac cycle via the arterial baroreflex. In humans, it is common to quantify SNA as bursts per minute or bursts per 100 heart beats. This type of quantification can be done in other species but is only commonly reported in sheep, which have heart rates similar to humans. In rabbits, rats, and mice, SNA is often recorded relative to a maximal level elicited in the laboratory to control for differences in electrode position among animals or on different study days. SNA in humans can also be presented as total activity, where normalization to the largest burst is a common approach. The goal of the present paper is to put together a summary of “best practices” in several of the most common experimental models and to discuss opportunities and challenges relative to the optimal measurement of SNA across species. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/guidelines-for-measuring-sympathetic-nerve-activity/ </jats:p

    Novel ketone diet enhances physical and cognitive performance.

    Get PDF
    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson's disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.-Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance.A.J.M. thanks the Research Councils UK for supporting his Academic Fellowship. This work was supported by the Defense Advanced Research Projects Agency.This is the final version of the article. It first appeared from FASEB at https://doi.org/10.1096/fj.201600773R

    Defining optimal soybean seeding rates and associated risk across North America

    Get PDF
    Soybean [Glycine max (L.) Merr.] seeding rate research across North America is typically conducted in small geo-political regions where environmental effects on the seeding rate × yield relationship are minimized. Data from 211 individual field studies (∼21,000 data points, 2007–2017) were combined from across North America ranging in yield from 1,000– 7,500 kg ha−1. Cluster analysis was used to stratify each individual field study into similar environmental (soil × climate) clusters and into high (HYL), medium (MYL), and low (LYL) yield levels. Agronomically optimal seeding rates (AOSR) were calculated and Monte Carlo risk analysis was implemented. Within the two northern most clusters the AOSR was higher in the LYL followed by the MYL and then HYL. Within the farthest south cluster, a relatively small (±15,000 seeds ha−1) change in seeding rate from the MYL was required to reach the AOSR of the LYL and HYL, respectively. The increase in seeding rate to reach the LYL AOSR was relatively greater (5x) than the decrease to reach the HYL AOSR within the northern most cluster. Regardless, seeding rates below the AOSR presented substantial risk and potential yield loss, while seeding rates above provided slight risk reduction and yield increases. Specific to LYLs and MYLs, establishing and maintaining an adequate plant stand until harvest maximized yield regardless of the seeding rate, while maximizing seed number was important with lower seeding rates. These findings will help growers manage their soybean seed investment by adjusting seeding rates based upon the productivity of the environment.Fil: Gaspar, Adam P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mourtzinis, Spyridon. University of Wisconsin; Estados UnidosFil: Kyle, Don. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Galdi, Eric. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Lindsey, Laura E.. Ohio State University; Estados UnidosFil: Hamman, William P.. Ohio State University; Estados UnidosFil: Matcham, Emma G. University of Wisconsin; Estados UnidosFil: Kandel, Hans J.. North Dakota State University; Estados UnidosFil: Schmitz, Peder. North Dakota State University; Estados UnidosFil: Stanley, Jordan D.. North Dakota State University; Estados UnidosFil: Schmidt, John P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mueller, Daren S.. University of Iowa; Estados UnidosFil: Nafziger, Emerson D.. University of Illinois; Estados UnidosFil: Ross, Jeremy. University of Arkansas for Medical Sciences; Estados UnidosFil: Carter, Paul R.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Varenhorst, Adam J.. University of South Dakota; Estados UnidosFil: Wise, Kiersten A.. University of Kentucky; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Carciochi, Walter Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Kansas State University; Estados UnidosFil: Chilvers, Martin I.. Michigan State University; Estados UnidosFil: Hauswedell, Brady. University of South Dakota; Estados UnidosFil: Tenuta, Albert U.. University of Guelph; CanadáFil: Conley, Shawn P.. University of Wisconsin; Estados Unido
    corecore