517 research outputs found

    Intrinsic and extrinsic factors drive ontogeny of early-life at-sea behaviour in a marine top predator

    Get PDF
    Young animals must learn to forage effectively to survive the transition from parental provisioning to independent feeding. Rapid development of successful foraging strategies is particularly important for capital breeders that do not receive parental guidance after weaning. The intrinsic and extrinsic drivers of variation in ontogeny of foraging are poorly understood for many species. Grey seals (Halichoerus grypus) are typical capital breeders; pups are abandoned on the natal site after a brief suckling phase, and must develop foraging skills without external input. We collected location and dive data from recently-weaned grey seal pups from two regions of the United Kingdom (the North Sea and the Celtic and Irish Seas) using animal-borne telemetry devices during their first months of independence at sea. Dive duration, depth, bottom time, and benthic diving increased over the first 40 days. The shape and magnitude of changes differed between regions. Females consistently had longer bottom times, and in the Celtic and Irish Seas they used shallower water than males. Regional sex differences suggest that extrinsic factors, such as water depth, contribute to behavioural sexual segregation. We recommend that conservation strategies consider movements of young naïve animals in addition to those of adults to account for developmental behavioural changes

    Mathematical modelling reveals differential effects of erythropoietin on proliferation and lineage commitment of human hematopoietic progenitors in early erythroid culture

    Get PDF
    Erythropoietin is essential for the production of mature erythroid cells, promoting both proliferation and survival. Whether erythropoietin and other cytokines can influence lineage commitment of hematopoietic stem and progenitor cells is of significant interest. To study lineage restriction of the common myeloid progenitor to the megakaryocyte/erythroid progenitor of peripheral blood CD34(+) cells, we have shown that the cell surface protein CD36 identifies the earliest lineage restricted megakaryocyte/erythroid progenitor. Using this marker and carboxyfluorescein succinimidyl ester to track cell divisions in vitro, we have developed a mathematical model that accurately predicts population dynamics of erythroid culture. Parameters derived from the modeling of cultures without added erythropoietin indicate that the rate of lineage restriction is not affected by erythropoietin. By contrast, megakaryocyte/erythroid progenitor proliferation is sensitive to erythropoietin from the time that CD36 first appears at the cell surface. These results shed new light on the role of erythropoietin in erythropoiesis and provide a powerful tool for further study of hematopoietic progenitor lineage restriction and erythropoiesis

    Uptake of Direct Acting Antivirals for Hepatitis C Virus in a New England Medicaid Population, 2014-2017

    Get PDF
    Introduction Introduction of the direct acting antiviral (DAA) sofosbuvir (SOV) in 2013 offered significant improvement over previous options for hepatitis C virus (HCV) treatment. Initial uptake was low in Medicaid and other populations, perhaps in part due to high drug cost and prior authorization (PA) restrictions related to fibrosis stage, prescribing provider specialty, and sobriety. Both the subsequent introduction of ledipasvir/sofosbuvir (LDV/SOV), an all-oral regimen for most genotypes, and lifting of PA restrictions were expected to increase overall uptake, but little is known about recent prescribing patterns. We examined trends in DAA uptake in a Medicaid population and identified the effect of these two events on treatment initiation. Study Design An interrupted time series (ITS) design utilized enrollment, medical, and pharmacy claims from Medicaid enrollees in three New England states, 12/2013-12/2017. Trends in treatment uptake, defined as 1+ pharmacy claim for a DAA, were examined overall, by demographic characteristics, and prior to and after two time points: 10/2014 (LDV/SOV approval date) and 7/2016 (date PA restrictions affecting two-thirds of members were lifted). Chi-square evaluated demographic differences, segmented regression models examined trends. Study Population The population included members ages 18-64 years with HCV (2+ claims with ICD-9/10 code for HCV or 1+ claim for chronic HCV). Eligible individuals remained in the sample until treatment initiation or Medicaid disenrollment. Findings The analytic sample averaged 30,433 members with HCV per month, mean age 42.9 years, 60% male. In 2014 3.3% of eligible members initiated treatment, increasing to 7.7% in 2017 (p = Conclusion While initial uptake of DAAs was low in this multi-state Medicaid population, treatment initiation among eligible members increased through 2017. Introduction of new medications and lifting of PA restrictions led to an immediate increase in uptake followed by relatively flat monthly utilization. Policy implications Sharp increases in uptake after LDV/SOV introduction may indicate warehousing of members in anticipation of LDV/SOV approval; increases after PA restrictions were lifted indicates demand for treatment among those affected by restrictions. As a large percentage of the Medicaid HCV population remains untreated, planned provider interviews will help to understand barriers and facilitators of treatment for HCV

    Antimicrobial Activity of Brassica rapa Nectar Lipid Transfer Protein

    Get PDF
    Poster presentation at the 2017 Mycological Society of America Annual Meeting.Antimicrobial peptides (AMPs) provide an ancient, innate immunity conserved in all multicellular organisms. In plants, there are several large families of AMPs defined by sequence similarity. The nonspecific lipid transfer protein (LTP) family is defined by a conserved signature of eight cysteines and has a compact structure with a lipid-binding hydrophobic cavity. The antimicrobial activity of LTPs varies greatly among plant species. An LTP from Brassica rapa (variety R-o-18) nectar was tested for antimicrobial activity. In a 96-well microplate, each well contained half strength potato dextrose broth, approximately 2000 spores, and concentrations of LTP peptide up to 300 μg/mL in a total volume of 100 μL. After 48 hours of incubation at 25 C in the dark, absorbance of the wells was measured at 595 nm on a microplate reader to quantify the inhibition of fungal growth. The amount of LTP needed to inhibit growth of pathogen strains by 50% (IC50) was calculated. This Brassica LTP was most effective against Trichoderma and Bipolaris oryzae with IC50 values of 0.78 μM and 1.71 μM, respectively. Additionally, both Colletotrichum trifolii and Alternaria solani had IC50 values of less than 4.0 μM. The activity of this Brassica LTP at such low biological values indicates that it is a potent defense protein. These results suggest that transgenic expression of antimicrobial LTPs has the potential to lead to improved broad-spectrum disease resistanc

    Heightened Epstein-Barr virus immunity and potential cross-reactivities in multiple sclerosis

    Get PDF
    Background: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated.Methods: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. Results: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. Discussion: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS

    The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers.

    Get PDF
    Encapsulation of drugs within nanocarriers that selectively target malignant cells promises to mitigate side effects of conventional chemotherapy and to enable delivery of the unique drug combinations needed for personalized medicine. To realize this potential, however, targeted nanocarriers must simultaneously overcome multiple challenges, including specificity, stability and a high capacity for disparate cargos. Here we report porous nanoparticle-supported lipid bilayers (protocells) that synergistically combine properties of liposomes and nanoporous particles. Protocells modified with a targeting peptide that binds to human hepatocellular carcinoma exhibit a 10,000-fold greater affinity for human hepatocellular carcinoma than for hepatocytes, endothelial cells or immune cells. Furthermore, protocells can be loaded with combinations of therapeutic (drugs, small interfering RNA and toxins) and diagnostic (quantum dots) agents and modified to promote endosomal escape and nuclear accumulation of selected cargos. The enormous capacity of the high-surface-area nanoporous core combined with the enhanced targeting efficacy enabled by the fluid supported lipid bilayer enable a single protocell loaded with a drug cocktail to kill a drug-resistant human hepatocellular carcinoma cell, representing a 10(6)-fold improvement over comparable liposomes

    Sulfa or Sulfone Prophylaxis and Geographic Region Predict Mutations in the Pneumocystis carinii Dihydropteroate Synthase Gene

    Get PDF
    To determine factors associated with mutations in the Pneumocystis carinii dihydropteroate synthase (DHPS) gene, a prospective study of human immunodeficiency virus (HIV)-infected patients with confirmed P. carinii pneumonia was conducted in Atlanta, Seattle, and San Francisco. Clinical information was obtained from patient interview and chart abstraction. DHPS genotype was determined from DNA sequencing. Overall, 76 (68.5%) of 111 patients had a mutant DHPS genotype, including 22 (81.5%) of 27 patients from San Francisco. In multivariate analysis, sulfa or sulfone prophylaxis and study site were independent predictors of a mutant genotype. Fourteen (53.8%) of 26 patients who were newly diagnosed with HIV infection and had never taken prophylaxis had a mutant genotype. The significance of geographic location as a risk factor for mutant genotype and the high proportion of mutant genotypes among persons never prescribed prophylaxis, including those newly diagnosed with HIV infection, provide indirect evidence that these mutations are transmitted from person to person either directly or through a common environmental source

    FUS Immunogold labeling TEM analysis of the neuronal cytoplasmic inclusions of neuronal intermediate filament inclusion disease: a frontotemporal lobar degeneration with FUS proteinopathy

    Get PDF
    Fused in sarcoma (FUS)-immunoreactive neuronal and glial inclusions define a novel molecular pathology called FUS proteinopathy. FUS has been shown to be a component of inclusions of familial amyotrophic lateral sclerosis with FUS mutation and three frontotemporal lobar degeneration entities, including neuronal intermediate filament inclusion disease (NIFID). The pathogenic role of FUS is unknown. In addition to FUS, many neuronal cytoplasmic inclusions (NCI) of NIFID contain aggregates of alpha-internexin and neurofilament proteins. Herein, we have shown that: (1) FUS becomes relatively insoluble in NIFID and there are no apparent posttranslational modifications, (2) there are no pathogenic abnormalities in the FUS gene in NIFID, and (3) immunoelectron microscopy demonstrates the fine structural localization of FUS in NIFID which has not previously been described. FUS localized to euchromatin, and strongly with paraspeckles, in nuclei, consistent with its RNA/DNA-binding functions. NCI of varying morphologies were observed. Most frequent were the 'loosely aggregated cytoplasmic inclusions,' 81% of which had moderate or high levels of FUS immunoreactivity. Much rarer 'compact cytoplasmic inclusions' and 'tangled twine ball inclusions' were FUS-immunoreactive at their granular peripheries, or heavily FUS-positive throughout, respectively. Thus, FUS may aggregate in the cytoplasm and then admix with neuronal intermediate filament accumulations

    Exploring the impact of selection bias in observational studies of COVID-19: a simulation study

    Get PDF
    BACKGROUND: Non-random selection of analytic subsamples could introduce selection bias in observational studies. We explored the potential presence and impact of selection in studies of SARS-CoV-2 infection and COVID-19 prognosis. METHODS: We tested the association of a broad range of characteristics with selection into COVID-19 analytic subsamples in the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK Biobank (UKB). We then conducted empirical analyses and simulations to explore the potential presence, direction and magnitude of bias due to this selection (relative to our defined UK-based adult target populations) when estimating the association of body mass index (BMI) with SARS-CoV-2 infection and death-with-COVID-19. RESULTS: In both cohorts, a broad range of characteristics was related to selection, sometimes in opposite directions (e.g. more-educated people were more likely to have data on SARS-CoV-2 infection in ALSPAC, but less likely in UKB). Higher BMI was associated with higher odds of SARS-CoV-2 infection and death-with-COVID-19. We found non-negligible bias in many simulated scenarios. CONCLUSIONS: Analyses using COVID-19 self-reported or national registry data may be biased due to selection. The magnitude and direction of this bias depend on the outcome definition, the true effect of the risk factor and the assumed selection mechanism; these are likely to differ between studies with different target populations. Bias due to sample selection is a key concern in COVID-19 research based on national registry data, especially as countries end free mass testing. The framework we have used can be applied by other researchers assessing the extent to which their results may be biased for their research question of interest
    corecore