Antimicrobial Activity of *Brassica rapa* Nectar Lipid Transfer Protein

Andrew E. Sathoff¹, Deborah A. Samac^{1,2}, Catherine Holl³, Tony Schmidt³, Clay Carter³

¹Department of Plant Pathology, University of Minnesota, ²USDA-ARS-Plant Science Research Unit, St. Paul, MN, ³Department of Plant Biology, University of Minnesota

Abstract

In plants, there are several large families of antimicrobial peptides (AMPs) defined by sequence similarity. The lipid transfer protein (LTP) family is defined by a conserved signature of eight cysteines and has a compact structure with a flexible lipid-binding hydrophobic cavity. The antimicrobial activity of LTPs varies greatly among plant species. An LTP from Brassica rapa (variety R-o-18) nectar (neLTP) was tested for antimicrobial activity. Using a microplate reader assay, the amount of neLTP needed to inhibit growth of pathogen strains by 50% (IC₅₀) was calculated. neLTP was most effective against Trichoderma viride and Bipolaris oryzae with IC₅₀ values of 0.78 μ M and 1.71 μ M, respectively. Additionally, both Colletotrichum trifolii and Alternaria solani had IC₅₀ values of less than 4.0 μ M. Using a spread plate assay, the IC₅₀ value against bacterial pathogens was calculated. neLTP had a IC₅₀ value of 34.8 μM against Pseudomonas syringae pv. tomato. The broad activity of neLTP at such low biological values indicates that it is a potent defensive protein in flowers.

Introduction

- AMPs provide an ancient, innate form of immunity conserved in all multicellular organisms.
- LTPs are compact, cationic peptides that have antimicrobial activity.
- LTPs are classified as pathogenesis-related (PR) proteins.

Objectives

- Determine if the heterologously expressed neLTP is biologically active.
- Assess the ability of neLTP to inhibit both fungal and bacterial growth.
- Evaluate neLTP for potential transgenic expression to develop plant lines with increased disease resistance.

Methods

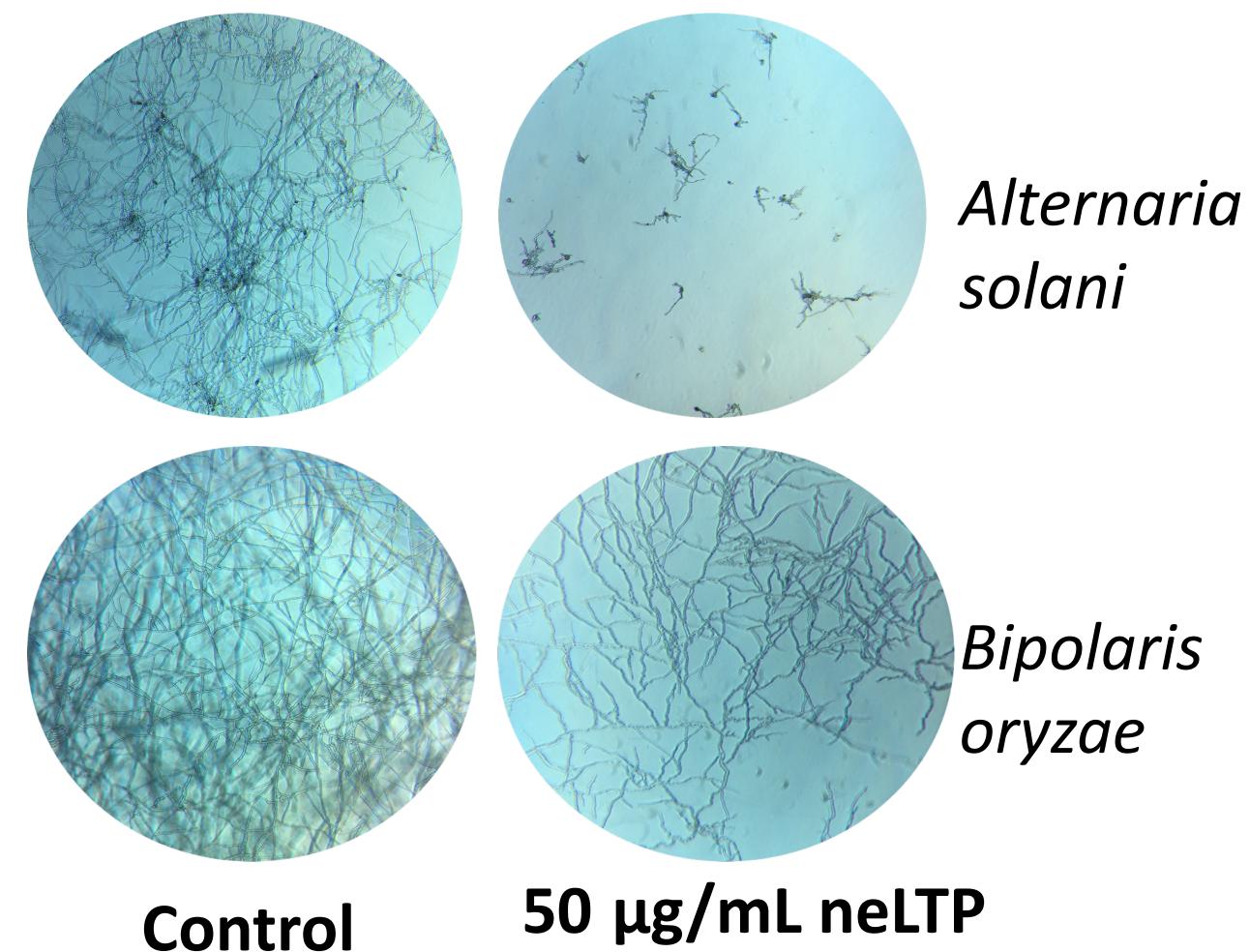
Microplate Assay

A microplate reader assay was used to monitor fungal growth inhibition as previously described (1).

- Spore suspensions were filtered, and densities were determined microscopically.
- In a 96-well microplate, each well contained half strength potato dextrose broth, approximately 2000 spores, and concentrations of neLTP peptide up to 300 μ g/mL in a total volume of 100 μ L.
- After 48 h at 25 °C in the dark, absorbance of the wells was measured at 595 nm to quantify the inhibition of fungal growth.
- From these values, the amount of neLTP needed to inhibit growth of the pathogens strains by 50% (IC₅₀) was calculated.

Spread-plate Assay

A spread-plate assay was used to monitor bacterial growth inhibition as previously described (2).


- Bacteria were grown out to an OD_{600} value of 0.1.
- 200 μL of bacteria was incubated with shaking for 3 hours with concentrations of neLTP peptide up to 300 $\mu g/mL$.
- Bacteria were serially diluted, and 100 μL was plated onto NBY plates.
- After 48 hours of incubation, the bacterial colonies were counted.
- From these values, the neLTP IC_{50} values were calculated.

Results

MGKNNTTILIIAMVLTTAMIMEEAKSYPI CNTDTNDLQKCSPAATGNNPPTPGPDC CAVAKSADLECLCPYLSLSGIDPSKIKSVL ASCGVGNPSCLS

Figure 1. Amino acid sequence of *Brassica* rapa nectar LTP (neLTP). Cysteines are in bold, and a putative signal peptide required for secretion from the cell is underlined.

neLTP (Fig. 1) was cloned into the pET21a expression vector and heterologously expressed in SHuffle T7 *E. coli* cells. Protein expression was induced by IPTG and was purified using the Thermo Scientific HisPur Cobalt Purification Kit. neLTP was tested *in vitro* against economically important pathogens. neLTP visibly suppressed fungal growth (Fig. 2). This inhibition lead to low IC₅₀ values and high biological activity against numerous fungal plant pathogens (Table 1). Also to a lesser extent, neLTP reduced bacterial growth and colony formation of *P. syringae* pv. *tomato*.

Figure 2. Multiple fungal pathogens were pre-incubated with neLTP from 0 to 300 μ g/mL and monitored for growth over 48 hours. Examples of growth inhibition of *Alternaria solani* and *Bipolaris oryzae* pre-incubated with 50 μ g/mL neLTP (~5 μ M) are shown.

Table 1. Activity of *Brassica rapa* neLTP against fungal and bacterial pathogens.

Microbe	IC ₅₀ (μM)	Host
Alternaria solani	3.73	Tomato and Potato
Bipolaris oryzae	1.72	Rice
Colletotrichum trifolii	2.98	Alfalfa
Fusarium oxysporum	14.4	Wide Host Range
Fusarium graminearum	25.5	Wheat and Barley
Trichoderma viride	0.79	Cultivated Mushrooms
Pseudomonas syringae pv. tomato	34.8	Tomato

Conclusions

- The heterologous expression of *Brassica rapa* neLTP in an *E. coli* expression system lead to the production of biologically active neLTP peptide.
- neLTP has high biological activity of against both fungal and bacterial pathogens.
- Transgenic expression of this antimicrobial LTP has the potential to lead to increased broad-spectrum resistance to economically important plant diseases.

References

- 1. Broekaert, W., Terras, F., Cammue, B., and Vanderleyden, J. 1990. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69: 55–59.
- 2. Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., and Wang, D. 2015. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proc. Natl. Acad. Sci. USA 112:15238-15243.