1,476 research outputs found

    Impacts of harmonic distortion from charging electric vehicles on low voltage networks

    Get PDF
    Paper focusing on the impacts of harmonic distortion from charging electric vehicles on low voltage networks

    The Relationship of Field Burn Severity Measures To Satellite-derived Burned Area Reflectance Classification (Barc) Maps

    Get PDF
    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn severity. The objective of this study was to compare the field burn severity measures to the digital numbers used to produce Burned Area Reflectance Classification (BARC) maps. Canopy density was the field variable most highly correlated to BARC data derived from either SPOT Multispectral (XS) or Landsat Thematic Mapper (TM) imagery. Among the other field variables, old litter depth and duff depth correlated better with the satellite data than did old litter cover. Ash cover correlated most poorly. Old litter cover correlated better with the satellite data than did exposed mineral soil or rock cover, but combining the mineral soil and rock cover fractions into a single inorganic cover fraction improved the correlation to a comparable level. Most field variables, with the notable exception of ash, tended to vary more at low and moderate severity sites than at high severity sites. Semivariograms of the field variables revealed spatial autocorrelation across the spatial scales sampled (2 – 130 m), which the 20 m or 30 m resolution satellite imagery only weakly detected. Future analyses will be broadened to quantify burn severity characteristics in other forest types and to consider erosion processes, such as soil water infiltration following fire

    Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteolytic <it>Clostridium botulinum </it>is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of <it>C. botulinum</it>. The recent determination of the genome sequence of <it>C. botulinum </it>has allowed comparative genomic indexing using a DNA microarray.</p> <p>Results</p> <p>Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic <it>C. botulinum </it>and the closely related <it>C. sporogenes </it>tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to <it>C. sporogenes</it>), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI.</p> <p>Conclusion</p> <p>Proteolytic <it>C. botulinum </it>has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic <it>C. botulinum</it>, and is suitable for clinical and forensic investigations of botulism outbreaks.</p

    The Relationship of Field Burn Severity Measures To Satellite-derived Burned Area Reflectance Classification (Barc) Maps

    Get PDF
    Preliminary results are presented from ongoing research on spatial variability of fire effects on soils and vegetation from the Black Mountain Two and Cooney Ridge wildfires, which burned in western Montana during the 2003 fire season. Extensive field fractional cover data were sampled to assess the efficacy of quantitative satellite image-derived indicators of burn severity. The objective of this study was to compare the field burn severity measures to the digital numbers used to produce Burned Area Reflectance Classification (BARC) maps. Canopy density was the field variable most highly correlated to BARC data derived from either SPOT Multispectral (XS) or Landsat Thematic Mapper (TM) imagery. Among the other field variables, old litter depth and duff depth correlated better with the satellite data than did old litter cover. Ash cover correlated most poorly. Old litter cover correlated better with the satellite data than did exposed mineral soil or rock cover, but combining the mineral soil and rock cover fractions into a single inorganic cover fraction improved the correlation to a comparable level. Most field variables, with the notable exception of ash, tended to vary more at low and moderate severity sites than at high severity sites. Semivariograms of the field variables revealed spatial autocorrelation across the spatial scales sampled (2 – 130 m), which the 20 m or 30 m resolution satellite imagery only weakly detected. Future analyses will be broadened to quantify burn severity characteristics in other forest types and to consider erosion processes, such as soil water infiltration following fire

    Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam

    Get PDF
    The Song Gianh is a small-sized (~3500 km2), monsoon-dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U-Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong-Yinggehai Basin (17–21 of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre-Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption

    Climate and anthropogenic impacts on North American erosion and sediment transport since the Last Glacial Maximum: evidence from the detrital zircon record of the Lower Mississippi Valley, USA

    Get PDF
    The Mississippi River provides an opportunity to examine models of sediment transport in large alluviated floodplain systems. We test the idea that sources of sandy sediment in such settings are invariable on timescales <104 y because of storage and recycling in the floodplains. To reconstruct the development of the Mississippi sediment load over the past 2500 years we collected sediment from an abandoned point bar complex nearby at False River, Louisiana, USA. We also took annual samples from the lower reaches between 2015 and 2021 to assess changes on that timescale. Optically stimulated luminescence dating indicated that the point bar accreted between 2460 and 860 years ago. Detrital zircon U-Pb dating was used to assess sediment source and variability over time. We confirm a dominant sediment flux from the Rocky Mountain foreland but with higher relative erosion from the Superior Province during the Last Glacial Maximum (LGM) based on existing data from the Gulf of Mexico. There have been resolvable changes in the sources of sediment particularly since the LGM and after 860 years ago, but also over shorter, even sub-annual timescales in the recent past. These changes may reflect seasonal weather or storm events in the headwater regions and imply limited floodplain buffering of the sand load. In recent times this may reflect the installation of levees in the lower reaches, suppressing reworking. Changes over 102–103 y time periods may be related to changes in climate (e.g., the Medieval and Roman warm periods) and to the development of agriculture across North America after ~2000 years ago. Detrital zircon dating is an effective provenance tool and does not appear to be strongly biased by the grain size of the sediment in this setting

    Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics

    Get PDF
    The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process

    Pan-Genomic Analysis of Clostridium botulinum Group II (Non-Proteolytic C. botulinum) Associated with Foodborne Botulism and Isolated from the Environment

    Get PDF
    The neurotoxin formed by Clostridium botulinum Group II is a major cause of foodborne botulism, a deadly intoxication. This study aims to understand the genetic diversity and spread of C. botulinum Group II strains and their neurotoxin genes. A comparative genomic study has been conducted with 208 highly diverse C. botulinum Group II strains (180 newly sequenced strains isolated from 16 countries over 80 years, 28 sequences from Genbank). Strains possessed a single type B, E, or F neurotoxin gene or were closely related strains with no neurotoxin gene. Botulinum neurotoxin subtype variants (including novel variants) with a unique amino acid sequence were identified. Core genome single-nucleotide polymorphism (SNP) analysis identified two major lineages—one with type E strains, and the second dominated by subtype B4 strains with subtype F6 strains. This study revealed novel details of population structure/diversity and established relationships between whole-genome lineage, botulinum neurotoxin subtype variant, association with foodborne botulism, epidemiology, and geographical source. Additionally, the genome sequences represent a valuable resource for the research community (e.g., understanding evolution of C. botulinum and its neurotoxin genes, dissecting key aspects of C. botulinum Group II biology). This may contribute to improved risk assessments and the prevention of foodborne botulism

    Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum

    Get PDF
    BACKGROUND: Clostridium botulinum is a group of four physiologically and phylogenetically distinct bacteria that produce botulinum neurotoxin. While studies have characterised variability between strains of Group I (proteolytic) C. botulinum, the genetic and physiological variability and relationships between strains within Group II (non-proteolytic) C. botulinum are not well understood. In this study the genome of Group II strain C. botulinum Eklund 17B (NRP) was sequenced and used to construct a whole genome DNA microarray. This was used in a comparative genomic indexing study to compare the relatedness of 43 strains of Group II C. botulinum (14 type B, 24 type E and 5 type F). These results were compared with characteristics determined from physiological tests. RESULTS: Whole genome indexing showed that strains of Group II C. botulinum isolated from a wide variety of environments over more than 75 years clustered together indicating the genetic background of Group II C. botulinum is stable. Further analysis showed that strains forming type B or type F toxin are closely related with only toxin cluster genes targets being unique to either type. Strains producing type E toxin formed a separate subset. Carbohydrate fermentation tests supported the observation that type B and F strains form a separate subset to type E strains. All the type F strains and most of type B strains produced acid from amylopectin, amylose and glycogen whereas type E strains did not. However, these two subsets did not differ strongly in minimum growth temperature or maximum NaCl concentration for growth. No relationship was found between tellurite resistance and toxin type despite all the tested type B and type F strains carrying tehB, while the sequence was absent or diverged in all type E strains. CONCLUSIONS: Although Group II C. botulinum form a tight genetic group, genomic and physiological analysis indicates there are two distinct subsets within this group. All type B strains and type F strains are in one subset and all type E strains in the other
    • …
    corecore