24 research outputs found

    Mutations in GDF5 Reveal a Key Residue Mediating BMP Inhibition by NOGGIN

    Get PDF
    Signaling output of bone morphogenetic proteins (BMPs) is determined by two sets of opposing interactions, one with heterotetrameric complexes of cell surface receptors, the other with secreted antagonists that act as ligand traps. We identified two mutations (N445K,T) in patients with multiple synostosis syndrome (SYM1) in the BMP–related ligand GDF5. Functional studies of both mutants in chicken micromass culture demonstrated a gain of function caused by a resistance to the BMP–inhibitor NOGGIN and an altered signaling effect. Residue N445, situated within overlapping receptor and antagonist interfaces, is highly conserved among the BMP family with the exception of BMP9 and BMP10, in which it is substituted with lysine. Like the mutant GDF5, both BMPs are insensitive to NOGGIN and show a high chondrogenic activity. Ectopic expression of BMP9 or the GDF5 mutants resulted in massive induction of cartilage in an in vivo chick model presumably by bypassing the feedback inhibition imposed by endogenous NOGGIN. Swapping residues at the mutation site alone was not sufficient to render Bmp9 NOG-sensitive; however, successive introduction of two additional substitutions imparted high to total sensitivity on customized variants of Bmp9. In conclusion, we show a new mechanism for abnormal joint development that interferes with a naturally occurring regulatory mechanism of BMP signaling

    Analysis of the transcription factor TGA2.1 from Nicotiana tabacum

    No full text
    Zur AufklĂ€rung der spezifischen Rolle von TGA2.1 sollten transgene TGA2.1-Überexpressionspflanzen sowie TGA2.1-transdominante Suppressor-Linien erzeugt werden. Die subzellullare Lokalisation der transgenen Proteine sollte durch Western-Blot-Analysen und DNA-Bindungsstudien untersucht werden. Weiterhin sollte die Auswirkung der verĂ€nderten TGA2.1-Mengen auf Zielgene nach Induktion mit SalizylsĂ€ure, Auxin und Methyljasmonat untersucht und die Ergebnisse mit denen analoger Experimente mit TGA2.2-Überexpressionspflanzen verglichen werden. Komplementierend zu den Überexpressionspflanzen sollten transdominante Suppressorpflanzen mit einem in der DNA-BindungsdomĂ€ne mutierten TGA2.1 erzeugt werden. Die analogen Experimente wie im Falle der TGA2.1-Überexpressionpflanzen sollten das Bild von der spezifischen Rolle von TGA2.1 ergĂ€nzen und im Zusammenhang mit den Ergebnissen aus bereits vorliegenden TGA2.2-Experimenten interpretiert werden. Da in frĂŒheren Veröffentlichungen nicht eindeutig nachzugewiesen werden konnte, ob der SARP-Komplex neben TGA2.2 auch TGA2.1 enthĂ€lt oder positive Nachweisreaktionen mit einer Kreuzreaktionen des Antikörpers zu erklĂ€ren waren, und ob die im Western-Blot detektierte Bande somit als gekĂŒrzte Formen von TGA2.1 oder durch ein weiteres Protein zu interpretieren war, sollte die Zusammensetzung des SARP-Komplexes untersucht werden. Sollte sich herausstellen, dass es sich bei den nachgewiesenen Protein um TGA2.1 handelt, galt es zu klĂ€ren, ob die Prozessierung des Proteins eine physiologische Relevanz hat oder ein Produkt des Zellaufschlusses ist. Im letzteren Fall sollten geeignetere Proteinextraktionsmethoden entwickelt werden. Ein AffinitĂ€tstag am C-Terminus von TGA2.1 sollte verwendet werden, um die absoluten Mengen des transgenen TGA2.1 mit denen des transgenen TGA2.2 zu vergleichen und um darĂŒber hinaus die Lokalisation der möglichen Deletion von TGA2.1 zu klĂ€ren. Da bei den vorliegenden transgenen TGA2.2-Pflanzen die Zellkernproteinfraktion nicht untersucht worden war, wurden diese in die Untersuchungen des ASF-1-Komplexes mit einbezogen

    Artificial splitting of a non‐ribosomal peptide synthetase by inserting natural docking domains

    No full text
    The interaction in multisubunit non‐ribosomal peptide synthetases (NRPSs) is mediated by docking domains that ensure the correct subunit‐to‐subunit interaction. We introduced natural docking domains into the three‐module xefoampeptide synthetase (XfpS) to create two to three artificial NRPS XfpS subunits. The enzymatic performance of the split biosynthesis was measured by absolute quantification of the products by HPLC‐ESI‐MS. The connecting role of the docking domains was probed by deleting integral parts of them. The peptide production data was compared to soluble protein amounts of the NRPS using SDS‐PAGE. Reduced peptide synthesis was not a result of reduced soluble NRPS concentration but a consequence of the deletion of vital docking domain parts. Splitting the xefoampeptide biosynthesis polypeptide by introducing docking domains was feasible and resulted in higher amounts of product in one of the two tested split‐module cases compared to the full‐length wild‐type enzyme

    Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS

    No full text
    Several peptides in clinical use are derived from non-ribosomal peptide synthetases (NRPS). In these systems multiple NRPS subunits interact with each other in a specific linear order mediated by specific docking domains (DDs), whose structures are not known yet, to synthesize well-defined peptide products. In contrast to classical NRPSs, single-module NRPS subunits responsible for the generation of rhabdopeptide/xenortide-like peptides (RXPs) can act in different order depending on subunit stoichiometry thereby producing peptide libraries. To define the basis for their unusual interaction patterns, we determine the structures of all N-terminal DDs ((N)DDs) as well as of an (DD)-D-N-(DD)-D-C complex and characterize all putative DD interactions thermodynamically for such a system. Key amino acid residues for DD interactions are identified that upon their exchange change the DD affinity and result in predictable changes in peptide production. Recognition rules for DD interactions are identified that also operate in other megasynthase complexes

    Radical S-Adenosyl Methionine Epimerases: Regioselective Introduction of Diverse D -Amino Acid Patterns into Peptide Natural Products

    No full text
    International audiencePoyD is a radical S-adenosyl methionine epimerase that introduces multiple d-configured amino acids at alternating positions into the highly complex marine peptides poly-theonamide A and B. This novel post-translational modification contributes to the ability of the polytheonamides to form unimolecular minimalistic ion channels and its cytotoxic activity at picomolar levels. Using a genome mining approach we have identified additional PoyD homologues in various bacteria. Three enzymes were expressed in E. coli with their cognate as well as engineered peptide precursors and shown to introduce diverse d-amino acid patterns into all-l peptides. The data reveal a family of architecturally and functionally distinct enzymes that exhibit high regioselectivity, substrate promiscuity, and irreversible action and thus provide attractive opportunities for peptide engineering
    corecore