143 research outputs found

    Fit to Race: Identifying the balance, type and sources of knowledge in fitness for Motorsport

    Get PDF
    In Motorsport, due perhaps to a lack of empirical evidence, it is not always clear what fitness training is required and what roles specific fitness components play, particularly outside the elite levels. Consequently, drivers and their trainers are often left to their own devices, placing reliance on anecdotal information. Accordingly, using a large sample of racing drivers, coaches and fitness trainers, the aim of this investigation was to identify the perceived importance and contribution of fitness components, the sources of information used to reach these conclusions and levels of confidence in the views reported. Survey data from 166 drivers (151 males, 15 females) showed that, in general, cardiovascular fitness, upper body strength, coordination and reactions were perceived as being the most important. Data on sources of information used supported the conjecture that training can often be based on “word of mouth”. Despite a fairly high level of confidence in the views expressed, there is clearly a significant opportunity for practitioners working within Motorsport to provide clearer, proven information so that drivers can feel confident that they are training optimally

    Allogeneic blood transfusion and prognosis following total hip replacement: a population-based follow up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allogeneic red blood cell transfusion is frequently used in total hip replacement surgery (THR). However, data on the prognosis of transfused patients are sparse. In this study we compared the risk of complications following THR in transfused and non-transfused patients.</p> <p>Methods</p> <p>A population-based follow-up study was performed using data from medical databases in Denmark. We identified 28,087 primary THR procedures performed from 1999 to 2007, from which we computed a propensity score for red blood cell transfusion based on detailed data on patient-, procedure-, and hospital-related characteristics. We were able to match 2,254 transfused with 2,254 non-transfused THR patients using the propensity score.</p> <p>Results</p> <p>Of the 28,087 THR patients, 9,063 (32.3%) received at least one red blood cell transfusion within 8 days of surgery. Transfused patients had higher 90-day mortality compared with matched non-transfused patients: the adjusted OR was 2.2 (95% confidence interval (CI): 1.2-3.8). Blood transfusion was also associated with increased odds of pneumonia (OR 2.1; CI: 1.2-3.8), whereas the associations with cardiovascular or cerebrovascular events (OR 1.4; CI: 0.9-2.2) and venous thromboembolism (OR 1.2; CI: 0.7-2.1) did not reach statistical significance. The adjusted OR of reoperation due to infection was 0.6 (CI: 0.1-2.9).</p> <p>Conclusions</p> <p>Red blood cell transfusion was associated with an adverse prognosis following primary THR, in particular with increased odds of death and pneumonia. Although the odds estimates may partly reflect unmeasured bias due to blood loss, they indicate the need for careful assessment of the risk versus benefit of transfusion even in relation to routine THR procedures.</p

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    Get PDF
    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells

    The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany

    Get PDF
    Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees

    miR-26b Promotes Granulosa Cell Apoptosis by Targeting ATM during Follicular Atresia in Porcine Ovary

    Get PDF
    More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro

    Relationship between Reproductive Allocation and Relative Abundance among 32 Species of a Tibetan Alpine Meadow: Effects of Fertilization and Grazing

    Get PDF
    Background: Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship. Methodology: We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species. Principal Findings: At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition. Conclusions/Significance: Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale

    Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    Get PDF
    Background: Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90 + liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90 + cells sorted from tumor (CD90 +CSCs) with parallel non-tumorous liver tissues (CD90 +NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings: CD90 + cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90 + cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90 +CSCs and CD90 +NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90 +CSCs and CD90 +NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90 +CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90 +CSCs compared to CD90 +NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90 +CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90 +CSCs in liver tumor tissues. Conclusions/Significance: The identified genes, such as GPC3 that are distinctly expressed in liver CD90 +CSCs, may be promising gene candidates for HCC therapy without inducing damages to normal liver stem cells. © 2012 Ho et al.published_or_final_versio

    Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the <it>Drosophila buzzatii </it>cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the <it>D. buzzatii </it>species cluster in order to assess the concordance of CHC differentiation with species divergence.</p> <p>Results</p> <p>Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C<sub>29 </sub>to C<sub>39</sub>, including methyl-branched alkanes, <it>n</it>-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of <it>D. serido </it>suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived <it>period </it>(<it>per</it>) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only <it>per </it>+ inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of <it>D. serido </it>significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal.</p> <p>Conclusions</p> <p>CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species.</p

    Thelytokous Parthenogenesis in the Fungus-Gardening Ant Mycocepurus smithii (Hymenoptera: Formicidae)

    Get PDF
    The general prevalence of sexual reproduction over asexual reproduction among organisms testifies to the evolutionary benefits of recombination, such as accelerated adaptation to changing environments and elimination of deleterious mutations. Documented instances of asexual reproduction in groups otherwise dominated by sexual reproduction challenge evolutionary biologists to understand the special circumstances that might confer an advantage to asexual reproductive strategies. Here we report one such instance of asexual reproduction in the ants. We present evidence for obligate thelytoky in the asexual fungus-gardening ant, Mycocepurus smithii, in which queens produce female offspring from unfertilized eggs, workers are sterile, and males appear to be completely absent. Obligate thelytoky is implicated by reproductive physiology of queens, lack of males, absence of mating behavior, and natural history observations. An obligate thelytoky hypothesis is further supported by the absence of evidence indicating sexual reproduction or genetic recombination across the species' extensive distribution range (Mexico-Argentina). Potential conflicting evidence for sexual reproduction in this species derives from three Mycocepurus males reported in the literature, previously regarded as possible males of M. smithii. However, we show here that these specimens represent males of the congeneric species M. obsoletus, and not males of M. smithii. Mycocepurus smithii is unique among ants and among eusocial Hymenoptera, in that males seem to be completely absent and only queens (and not workers) produce diploid offspring via thelytoky. Because colonies consisting only of females can be propagated consecutively in the laboratory, M. smithii could be an adequate study organism a) to test hypotheses of the population-genetic advantages and disadvantages of asexual reproduction in a social organism and b) inform kin conflict theory
    corecore