704 research outputs found

    MR Imaging of Reynolds Dilatancy in the Bulk of Smooth Granular Flows

    Get PDF
    Article / Letter to editorLeiden Instituut Onderzoek Natuurkund

    Matrix and Stimulus Sample Sizes in the Weighted MDS Model: Empirical Metric Recovery Functions

    Get PDF
    The only guidelines for sample size that exist in the multidimensional scaling (MDS) literature are a set of heuristic "rules-of-thumb" that have failed to live up to Young's (1970) goal of finding func tional relationships between sample size and metric recovery. This paper develops answers to two im portant sample-size questions in nonmetric weight ed MDS settings, both of which are extensions of work reported in MacCallum and Cornelius (1977): (1) are the sample size requirements for number of stimuli and number of matrices compensatory? and (2) what type of functional relationships exist between the number of matrices and metric recov ery ? The graphs developed to answer the second question illustrate how such functional relation ships can be defined empirically in a wide range of MDS and other complicated nonlinear models.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Real-Reward Testing for Probabilistic Processes (Extended Abstract)

    Full text link
    We introduce a notion of real-valued reward testing for probabilistic processes by extending the traditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may and must preorders turn out to be inverses. We show that for convergent processes with finitely many states and transitions, but not in the presence of divergence, the real-reward must-testing preorder coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we characterise the usual resolution-based testing in terms of the weak transitions of processes, without having to involve policies, adversaries, schedulers, resolutions, or similar structures that are external to the process under investigation. This requires establishing the continuity of our function for calculating testing outcomes.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Yoctocalorimetry: phonon counting in nanostructures

    Get PDF
    It appears feasible with nanostructures to perform calorimetry at the level of individual thermal phonons. Here I outline an approach employing monocrystalline mesoscopic insulators, which can now be patterned from semiconductor heterostructures into complex geometries with full, three- dimensional relief. Successive application of these techniques also enables definition of integrated nanoscale thermal transducers; coupling these to a dc SQUID readout yields the requisite energy sensitivity and temporal resolution with minimal back action. The prospect of phonon counting opens intriguing experimental possibilities with analogies in quantum optics. These include fluctuation-based phonon spectroscopy, phonon shot noise in the energy relaxation of nanoscale systems, and quantum statistical phenomena such as phonon bunching and anticorrelated electron-phonon exchange.Comment: 27 pages, 8 figure

    FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

    Get PDF
    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome

    General Axisymmetric Solutions and Self-Tuning in 6D Chiral Gauged Supergravity

    Full text link
    We re-examine the properties of the axially-symmetric solutions to chiral gauged 6D supergravity, recently found in refs. hep-th/0307238 and hep-th/0308064. Ref. hep-th/0307238 finds the most general solutions having two singularities which are maximally-symmetric in the large 4 dimensions and which are axially-symmetric in the internal dimensions. We show that not all of these solutions have purely conical singularities at the brane positions, and that not all singularities can be interpreted as being the bulk geometry sourced by neutral 3-branes. The subset of solutions for which the metric singularities are conical precisely agree with the solutions of ref. hep-th/0308064. Establishing this connection between the solutions of these two references resolves a minor conflict concerning whether or not the tensions of the resulting branes must be negative. The tensions can be both negative and positive depending on the choice of parameters. We discuss the physical interpretation of the non-conical solutions, including their significance for the proposal for using 6-dimensional self-tuning to understand the small size of the observed vacuum energy. In passing we briefly comment on a recent paper by Garriga and Porrati which criticizes the realization of self-tuning in 6D supergravity.Comment: 27 pages, 1 figure; JHEP3 style; Some references added, and discussion of tension constraints and unwarped solutions made more explici

    Quintessential Maldacena-Maoz Cosmologies

    Full text link
    Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quintessence instead of Yang-Mills fields, thereby demonstrating that these cosmologies do not depend on a special choice of matter to split the Euclidean boundary. We conclude that if our Universe is fundamentally anti-de Sitter-like [with the current acceleration being only temporary], then this may force us to confront the holography of spaces with a connected bulk but a disconnected boundary.Comment: Much improved exposition, exponent in Cai-Galloway theorem fixed, axionic interpretation of scalar explained, JHEP version. 33 pages, 3 eps figure

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Is the evidence for dark energy secure?

    Full text link
    Several kinds of astronomical observations, interpreted in the framework of the standard Friedmann-Robertson-Walker cosmology, have indicated that our universe is dominated by a Cosmological Constant. The dimming of distant Type Ia supernovae suggests that the expansion rate is accelerating, as if driven by vacuum energy, and this has been indirectly substantiated through studies of angular anisotropies in the cosmic microwave background (CMB) and of spatial correlations in the large-scale structure (LSS) of galaxies. However there is no compelling direct evidence yet for (the dynamical effects of) dark energy. The precision CMB data can be equally well fitted without dark energy if the spectrum of primordial density fluctuations is not quite scale-free and if the Hubble constant is lower globally than its locally measured value. The LSS data can also be satisfactorily fitted if there is a small component of hot dark matter, as would be provided by neutrinos of mass 0.5 eV. Although such an Einstein-de Sitter model cannot explain the SNe Ia Hubble diagram or the position of the `baryon acoustic oscillation' peak in the autocorrelation function of galaxies, it may be possible to do so e.g. in an inhomogeneous Lemaitre-Tolman-Bondi cosmology where we are located in a void which is expanding faster than the average. Such alternatives may seem contrived but this must be weighed against our lack of any fundamental understanding of the inferred tiny energy scale of the dark energy. It may well be an artifact of an oversimplified cosmological model, rather than having physical reality.Comment: 12 pages, 5 figures; to appear in a special issue of General Relativity and Gravitation, eds. G.F.R. Ellis et al; Changes: references reformatted in journal style - text unchange

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio
    corecore