586 research outputs found
What matters to adolescents with obesity, and their caregivers, when considering bariatric surgery or weight loss devices? A qualitative evidence synthesis
Background
Bariatric surgery and weight loss devices have been considered as a therapeutic option in some settings for adolescents with severe obesity. We conducted a systematic review and qualitative evidence synthesis of factors affecting adolescent and caregiver decision-making processes around such interventions, as well as post-surgery demands and challenges, so that their experiences might be better understood and improved support given. No previous qualitative evidence synthesis has been published on this topic.
Methods and findings
We searched 10 bibliographic databases and followed-up gray literature and citations sources. We performed a qualitative evidence synthesis on 19 primary qualitative research studies in adolescents aged 13 years or older. They reported diverse motivations and incentives for considering these interventions, including the physical and social problems resulting from living with obesity, and an awareness of the benefits and limitations of interventions. They reported that they need: information, physical and emotional support and, in some cases, financial assistance. There was high confidence in a majority of these findings (GRADE CERQual).
Conclusions
We found that supportive interventions accompanying bariatric surgery should be in place to offer: practical help; address anxieties and uncertainties; and facilitate both appropriate decision-making and the achievement of young people's desired outcomes
Spontaneous symmetry breaking in gauge theories via Bose-Einstein condensation
We propose a mechanism naturally leading to the spontaneous symmetry breaking
in a gauge theory. The Higgs field is assumed to have global and gauged
internal symmetries. We associate a non zero chemical potential to one of the
globally conserved charges commuting with all of the gauge transformations.
This induces a negative mass squared for the Higgs field triggering the
spontaneous symmetry breaking of the global and local symmetries. The mechanism
is general and we test the idea for the electroweak theory in which the Higgs
sector is extended to possess an extra global Abelian symmetry. To this
symmetry we associate a non zero chemical potential. The Bose-Einstein
condensation of the Higgs leads, at tree level, to modified dispersion
relations for the Higgs field while the dispersion relations of the gauge
bosons and fermions remain undisturbed. The latter are modified through higher
order corrections. We have computed some corrections to the vacuum
polarizations of the gauge bosons and fermions. To quantify the corrections to
the gauge boson vacuum polarizations with respect to the Standard Model we
considered the effects on the T parameter. We finally derive the one loop
modified fermion dispersion relations.Comment: RevTeX 4, 13 pages. Added references and corrected typo
Plasma scale length effects on protons generated in ultra-intense laser–plasmas
The energy spectra of protons generated by ultra-intense (1020 W cm−2) laser interactions with a preformed plasma of scale length measured by shadowgraphy are presented. The effects of the preformed plasma on the proton beam temperature and the number of protons are evaluated. Two-dimensional EPOCH particle-in-cell code simulations of the proton spectra are found to be in agreement with measurements over a range of experimental parameter
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Laser-Driven Ultrafast Field Propagation on Solid Surfaces
The interaction of a 3×1019 W/cm2 laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude ∼104 A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum
Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution
A new class of FLRW cosmological models with time-evolving fundamental
parameters should emerge naturally from a description of the expansion of the
universe based on the first principles of quantum field theory and string
theory. Within this general paradigm, one expects that both the gravitational
Newton's coupling, G, and the cosmological term, Lambda, should not be strictly
constant but appear rather as smooth functions of the Hubble rate. This
scenario ("running FLRW model") predicts, in a natural way, the existence of
dynamical dark energy without invoking the participation of extraneous scalar
fields. In this paper, we perform a detailed study of these models in the light
of the latest cosmological data, which serves to illustrate the
phenomenological viability of the new dark energy paradigm as a serious
alternative to the traditional scalar field approaches. By performing a joint
likelihood analysis of the recent SNIa data, the CMB shift parameter, and the
BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the
main cosmological parameters. Furthermore, we derive the theoretically
predicted dark-matter halo mass function and the corresponding redshift
distribution of cluster-size halos for the "running" models studied. Despite
the fact that these models closely reproduce the standard LCDM Hubble
expansion, their normalization of the perturbation's power-spectrum varies,
imposing, in many cases, a significantly different cluster-size halo redshift
distribution. This fact indicates that it should be relatively easy to
distinguish between the "running" models and the LCDM cosmology using realistic
future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1
Table. Typos corrected. Extended discussion on the computation of the
linearly extrapolated density threshold above which structures collapse in
time-varying vacuum models. One appendix, a few references and one figure
adde
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity
In this paper, we solve the field equations in metric f(R) gravity for
Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We
find two types of non-vacuum solutions by taking isotropic and anisotropic
fluids as the source of matter and dark energy. The physical behavior of these
solutions is analyzed and compared in the future evolution with the help of
some physical and geometrical parameters. It is concluded that in the presence
of isotropic fluid, the model has singularity at and represents
continuously expanding shearing universe currently entering into phantom phase.
In anisotropic fluid, the model has no initial singularity and exhibits the
uniform accelerating expansion. However, the spacetime does not achieve
isotropy as in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
- …