69 research outputs found
Magnetic field dependence of the penetration depth of d-wave superconductors with strong isolated impurities
A d-wave superconductor with isolated strong non-magnetic impurities should
exhibit an upturn in the penetration depth at low temperatures. Here we
calculate how an external magnetic field supresses this effect.Comment: 2 pages, 1 figure, to appear in Physica C (proceedings for the
M2S-RIO Conference, May 25-30, Rio de Janeiro, Brazil
HLA Heterozygote Advantage against HIV-1 Is Driven by Quantitative and Qualitative Differences in HLA Allele-Specific Peptide Presentation.
Pathogen-mediated balancing selection is regarded as a key driver of host immunogenetic diversity. A hallmark for balancing selection in humans is the heterozygote advantage at genes of the human leukocyte antigen (HLA), resulting in improved HIV-1 control. However, the actual mechanism of the observed heterozygote advantage is still elusive. HLA heterozygotes may present a broader array of antigenic viral peptides to immune cells, possibly resulting in a more efficient cytotoxic T-cell response. Alternatively, heterozygosity may simply increase the chance to carry the most protective HLA alleles, as individual HLA alleles are known to differ substantially in their association with HIV-1 control. Here, we used data from 6,311 HIV-1-infected individuals to explore the relative contribution of quantitative and qualitative aspects of peptide presentation in HLA heterozygote advantage against HIV. Screening the entire HIV-1 proteome, we observed that heterozygous individuals exhibited a broader array of HIV-1 peptides presented by their HLA class I alleles. In addition, viral load was negatively correlated with the breadth of the HIV-1 peptide repertoire bound by an individual's HLA variants, particularly at HLA-B. This suggests that heterozygote advantage at HLA-B is at least in part mediated by quantitative peptide presentation. We also observed higher HIV-1 sequence diversity among HLA-B heterozygous individuals, suggesting stronger evolutionary pressure from HLA heterozygosity. However, HLA heterozygotes were also more likely to carry certain HLA alleles, including the highly protective HLA-B*57:01 variant, indicating that HLA heterozygote advantage ultimately results from a combination of quantitative and qualitative effects in antigen presentation
Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals
Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y
in the cuprate superconductor YBaCuO is used as a novel
technique for measuring the absolute value of the low temperature magnetic
penetration depth . The Gd ESR spectrum of samples with
substitution was obtained with a broadband microwave technique
that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR
spectrum is determined by the crystal field that lifts the level degeneracy of
the spin 7/2 Gd ion and details of this spectrum provide information
concerning oxygen ordering in the samples. The magnetic penetration depth is
obtained by relating the number of Gd ions exposed to the microwave magnetic
field to the frequency-integrated intensity of the observed ESR transitions.
This technique has allowed us to determine precise values of for
screening currents flowing in the three crystallographic orientations (, and ) in samples of GdYBaCuO of three different oxygen contents ( K), ( K) and
( K). The in-plane values are found to depart substantially from the
widely reported relation .Comment: 14 pages, 12 figures; version to appear in PR
Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films
We have studied the magnetotransport properties in the normal state for a
series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and
0.12. A variable degree of compressive or tensile strain results from the
lattice mismatch between the substrate and the film, and affects the transport
properties differently from the influence of the zinc impurities. In
particular, the orbital magnetoresistance (OMR) varies with y but is
strain-independent. The relations for the resistivity and the Hall angle and
the proportionality between the OMR and tan^2 theta are followed about 70 K. We
have been able to separate the strain and impurity effects by rewriting the
above relations, where each term is strain-independent and depends on y only.
We also find that changes in the lattice constants give rise to closely the
same fractional changes in other terms of the equation.The OMR is more strongly
supressed by the addition of impurities than tan^2 theta. We conclude that the
relaxation ratethat governs Hall effect is not the same as for the
magnetoresistance. We also suggest a correspondence between the transport
properties and the opening of the pseudogap at a temperature which changes when
the La-sr ratio changes, but does not change with the addition of the zinc
impurities
Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes
we identify the intrinsic bulk pairing symmetry for both electron and
hole-doped cuprates from the existing bulk- and nearly bulk-sensitive
experimental results such as magnetic penetration depth, Raman scattering,
single-particle tunneling, Andreev reflection, nonlinear Meissner effect,
neutron scattering, thermal conductivity, specific heat, and angle-resolved
photoemission spectroscopy. These experiments consistently show that the
dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave
with eight line nodes, and of anisotropic s-wave in electron-doped cuprates.
The proposed pairing symmetries do not contradict some surface- and
phase-sensitive experiments which show a predominant d-wave pairing symmetry at
the degraded surfaces. We also quantitatively explain the phase-sensitive
experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and
YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure
GaSb-based solar cells for multi-junction integration on Si substrates
We report on the first single-junction GaSb solar cell epitaxially grown on a Si substrate. A control stand-alone GaSb solar cell was primarily fabricated, which demonstrated a 5.90% efficiency (AM1.5G). The preparation, growth and manufacturing procedures were then adapted to create the GaSb-on-Si solar cell. The hybrid device resulted in a degraded efficiency for which comparison between experimental and simulated data revealed dominant non-radiative recombination processes. Material and electrical characterization also highlighted the impact of anti-phase domains and boundaries and threading dislocation density on the shunt resistance of the cell. Nevertheless, the GaSb-on-Si cell performance is close to recent results on the integration of GaSb solar cells on GaAs, despite a much larger lattice mismatch (12% vs 8%). Routes for improvement, concerning the material quality and cell structure, are proposed. This work lays the foundations of a GaSb-based multi-junction solar cell monolithically integrated on Si
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Influence of internal disorder on the superconducting state in the organic layered superconductor kappa-(BEDT-TTF)2Cu[N(CN)2]Br
We report high-sensitivity AC susceptibility measurements of the penetration
depth in the Meissner state of the layered organic superconductor
kappa-(BEDT-TTF)2Cu[N(CN)2]Br. We have studied nominally pure single crystals
from the two different syntheses and employed controlled cooling procedures in
order to minimize intrinsic remnant disorder at low temperatures associated
with the glass transition, caused by ordering of the ethylene moieties in
BEDT-TTF molecule at T_G = 75 K. We find that the optimal cooling procedures
(slow cooling of -0.2 K/h or annealing for 3 days in the region of T_G) needed
to establish the ground state, depend critically on the sample origin
indicating different relaxation times of terminal ethylene groups. We show
that, in the ground state, the behavior observed for nominally pure single
crystals from both syntheses is consistent with unconventional d-wave order
parameter. The in-plane penetration depth lambda_in(T) is strongly linear,
whereas the out-of-plane component lambda_out(T) varies as T^2. In contrast,
the behavior of single crystals with long relaxation times observed after slow
(-0.2 K/h) cooling is as expected for a d-wave superconductor with impurities
(i.e. lambda_in(T) propto lambda_out(T) propto T^2) or might be also reasonably
well described by the s-wave model. Our results might reconcile the
contradictory findings previously reported by different authors.Comment: 13 pages, 10 figures, submitted to Phys. Rev.
Microflares and the Statistics of X-ray Flares
This review surveys the statistics of solar X-ray flares, emphasising the new
views that RHESSI has given us of the weaker events (the microflares). The new
data reveal that these microflares strongly resemble more energetic events in
most respects; they occur solely within active regions and exhibit
high-temperature/nonthermal emissions in approximately the same proportion as
major events. We discuss the distributions of flare parameters (e.g., peak
flux) and how these parameters correlate, for instance via the Neupert effect.
We also highlight the systematic biases involved in intercomparing data
representing many decades of event magnitude. The intermittency of the
flare/microflare occurrence, both in space and in time, argues that these
discrete events do not explain general coronal heating, either in active
regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
- …