8,660 research outputs found

    Zoology of a non-local cross-diffusion model for two species

    Full text link
    We study a non-local two species cross-interaction model with cross-diffusion. We propose a positivity preserving finite volume scheme based on the numerical method introduced in Ref. [15] and explore this new model numerically in terms of its long-time behaviours. Using the so gained insights, we compute analytical stationary states and travelling pulse solutions for a particular model in the case of attractive-attractive/attractive-repulsive cross-interactions. We show that, as the strength of the cross-diffusivity decreases, there is a transition from adjacent solutions to completely segregated densities, and we compute the threshold analytically for attractive-repulsive cross-interactions. Other bifurcating stationary states with various coexistence components of the support are analysed in the attractive-attractive case. We find a strong agreement between the numerically and the analytically computed steady states in these particular cases, whose main qualitative features are also present for more general potentials

    Local well-posedness of the generalized Cucker-Smale model

    Full text link
    In this paper, we study the local well-posedness of two types of generalized Cucker-Smale (in short C-S) flocking models. We consider two different communication weights, singular and regular ones, with nonlinear coupling velocities v∣v∣β−2v|v|^{\beta-2} for β>3−d2\beta > \frac{3-d}{2}. For the singular communication weight, we choose ψ1(x)=1/∣x∣α\psi^1(x) = 1/|x|^{\alpha} with α∈(0,d−1)\alpha \in (0,d-1) and β≥2\beta \geq 2 in dimension d>1d > 1. For the regular case, we select ψ2(x)≥0\psi^2(x) \geq 0 belonging to (L_{loc}^\infty \cap \mbox{Lip}_{loc})(\mathbb{R}^d) and β∈(3−d2,2)\beta \in (\frac{3-d}{2},2). We also remark the various dynamics of C-S particle system for these communication weights when β∈(0,3)\beta \in (0,3)

    Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure

    Get PDF
    We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and V\'azquez, where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady states

    The derivation of Swarming models: Mean-Field Limit and Wasserstein distances

    Full text link
    These notes are devoted to a summary on the mean-field limit of large ensembles of interacting particles with applications in swarming models. We first make a summary of the kinetic models derived as continuum versions of second order models for swarming. We focus on the question of passing from the discrete to the continuum model in the Dobrushin framework. We show how to use related techniques from fluid mechanics equations applied to first order models for swarming, also called the aggregation equation. We give qualitative bounds on the approximation of initial data by particles to obtain the mean-field limit for radial singular (at the origin) potentials up to the Newtonian singularity. We also show the propagation of chaos for more restricted set of singular potentials

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d≥2d\geq 2 and in all of space for d≥3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    Intrinsic noise-induced phase transitions: beyond the noise interpretation

    Get PDF
    We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Ito vs. Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Ito. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau type model. A detailed discussion of new numerical algorithms used in both interpretations is also presented.Comment: 9 pages, 8 figures, to be published in Phys. Rev.

    Singular Cucker-Smale Dynamics

    Full text link
    The existing state of the art for singular models of flocking is overviewed, starting from microscopic model of Cucker and Smale with singular communication weight, through its mesoscopic mean-filed limit, up to the corresponding macroscopic regime. For the microscopic Cucker-Smale (CS) model, the collision-avoidance phenomenon is discussed, also in the presence of bonding forces and the decentralized control. For the kinetic mean-field model, the existence of global-in-time measure-valued solutions, with a special emphasis on a weak atomic uniqueness of solutions is sketched. Ultimately, for the macroscopic singular model, the summary of the existence results for the Euler-type alignment system is provided, including existence of strong solutions on one-dimensional torus, and the extension of this result to higher dimensions upon restriction on the smallness of initial data. Additionally, the pressureless Navier-Stokes-type system corresponding to particular choice of alignment kernel is presented, and compared - analytically and numerically - to the porous medium equation

    A Chandra Snapshot Survey of IR-bright LINERs: A Possible Link Between Star Formation, AGN Fueling, and Mass Accretion

    Full text link
    We present results from a high resolution X-ray imaging study of nearby LINERs observed by Chandra. This study complements and extends previous X-ray studies of LINERs, focusing on the under-explored population of nearby dust-enshrouded infrared-bright LINERs. The sample consists of 15 IR-bright LINERs (L_FIR/L_B > 3), with distances that range from 11 to 26 Mpc. Combining our sample with previous Chandra studies we find that ~ 51% (28/55) of the LINERs display compact hard X-ray cores. The nuclear 2-10 keV luminosities of the galaxies in this expanded sample range from ~ 2 X 10^38 ergs s^-1 to ~ 2 X 10^44 ergs s^-1. We find an intriguing trend in the Eddington ratio vs. L_FIR and L_FIR/L_B for the AGN-LINERs in the expanded sample that extends over seven orders of magnitude in L/L_Edd. This correlation may imply a link between black hole growth, as measured by the Eddington ratio, and the star formation rate (SFR), as measured by the far-IR luminosity and IR-brightness ratio. If the far-IR luminosity is an indicator of the molecular gas content in our sample of LINERs, our results may further indicate that the mass accretion rate scales with the host galaxy's fuel supply. We discuss the potential implications of our results in the framework of black hole growth and AGN fueling in low luminosity AGN. (Abridged)Comment: Accepted for publication by ApJ 14 pages, 13 figure

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Contractivity of Transport Distances for the Kinetic Kuramoto Equation

    Get PDF
    • …
    corecore