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Abstract We present synchronization and contractivity estimates for the
kinetic Kuramoto model obtained from the Kuramoto phase model in the
mean-field limit. For identical Kuramoto oscillators, we present an admis-
sible class of initial data leading to time-asymptotic complete synchroniza-
tion, that is, all measure valued solutions converge to the traveling Dirac
measure concentrated on the initial averaged phase. In the case of non-
identical oscillators, we show that the velocity field converges to the av-
erage natural frequency proving that the oscillators move asymptotically
with the same frequency under suitable assumptions on the initial config-
uration. If two initial Radon measures have the same natural frequency
density function and strength of coupling, we show that the Wasserstein p-
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distance between corresponding measure valued solutions is exponentially
decreasing in time. This contraction principle is more general than previous
L1-contraction properties of the Kuramoto phase model.

Keywords Kuramoto model · complete synchronization · Wasserstein
distance · contraction
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1 Introduction

The objective of this paper is to present a contraction property of the ki-
netic Kuramoto equation in the transport distances. The synchronization
phenomena exhibited by various biological systems are ubiquitous in nature,
e.g., the flashing of fireflies, chorusing of crickets, synchronous firing of car-
diac pacemakers, and metabolic synchrony in yeast cell suspensions (see for
instance [1,5]). Winfree and Kuramoto [20,31] pioneered the mathemat-
ical treatment of these synchronized phenomena. They introduced phase
models for large weakly coupled oscillator systems, and showed that the
synchronized behavior of complex biological systems can emerge from the
competing mechanisms of intrinsic randomness and sinusoidal couplings.
The kinetic Kuramoto equation has been widely used in the literature [1]
to analyze the phase transition from a completely disordered state to a
partially ordered state as the coupling strength increases from zero. Sup-
pose that g = g(Ω) is an integrable steady probability density function
for natural frequencies with a compact support (see (2.1) for details). Let
f = f(θ,Ω, t) be the probability density function of Kuramoto oscillators
in θ ∈ T := R/(2πZ) with a natural frequency Ω at time t as in [21]. The
kinetic Kuramoto equation(KKE) is given as follows:

∂tf + ∂θ(ω[f ]f) = 0, (θ,Ω) ∈ T× R, t > 0,

ω[f ](θ,Ω, t) = Ω −K
∫
T

sin(θ − θ∗)ρ(θ∗, t)dθ∗, ρ(θ∗, t) :=

∫
R
fdΩ∗,

(1.1)

subject to the initial data:

f(θ,Ω, 0) = f0(θ,Ω),

∫
T
f0dθ = g(Ω). (1.2)

Note that KKE (1.1) can be regarded as a scalar conservation law with a
nonlocal flux, and it has been derived from a previously proposed Kuramoto
model [9,21]. However, to the best of authors’ knowledge, few studies have
investigated the qualitative properties of the KKE, such as an asymptotic
behavior and stability of some equilibria.

The main results of this paper can be summarized as follows. First, we
present sufficient conditions for the emergence of completely synchronized
states. More precisely, when many coupled limit-cycle oscillators have the
same natural frequency (identical oscillators), and the support of the initial
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Radon measure in phase is confined in a half circle, we show that complete
phase synchronization occurs asymptotically. This means that the measure-
valued solution approaches asymptotically to a multiple of a Dirac delta
concentrated on the initial average phase value and the common natural
frequency value. In the case of non-identical oscillators, we obtain that the
support of the velocity field associated to the measure-valued solution de-
creases exponentially fast to one point, when the diameter of the support of
the initial Radon measure in phase is less than π and in natural frequency is
bounded, and the coupling strength K is large enough. In fact, the velocity
field converges to zero showing that the oscillators move asymptotically with
the same frequency. For this purpose, we lift the finite-dimensional result
for the Kuramoto model (KM) to the infinite-dimensional KKE. Second,
we present a contraction property of the KKE in the Wasserstein p-distance
for measure valued solutions with the same natural frequency distribution
by using a strategy similar to the one described in [8,22]. We define a cu-
mulative distribution function of a density function f for the KKE, say F ,
and we derive a new integro-differential equation using its pseudo-inverse
function. Then, we use simple techniques for the optimal mass transport
in one-dimension, i.e., the equivalence relation between the Wasserstein p-
distance and the Lp-distance of the corresponding pseudo-inverse of F in
order to obtain the exponential decay estimate of the Wasserstein p-distance
between two measure-valued solutions.

The rest of this paper is organized as follows. In Section 2, we briefly
review the Kuramoto model and its mean-field version (the KKE), and
we provide several a priori estimates. In Section 3, we revisit an existence
theory of measure valued solutions to the KKE, and we present several a
priori estimates, in particular, we provide a finite-time stability estimate
for measure-valued solutions in a bounded Lipschitz distance. In Section
4, we show the emergence of completely synchronized states by lifting the
corresponding results for the KM to the KKE using the argument of the
particle-in-cell method. This strategy has been employed in the Cucker-
Smale flocking model in [7]. Section 5 is devoted to the contraction property
of the KKE using the method of optimal mass transport as described in [8,
22].

2 Preliminaries

In this section, we briefly review the particle Kuramoto model and its kinetic
mean-field model. Consider an ensemble of sinusoidally coupled nonlinear
oscillators that can be visualized as active rotors on the circle S1. Through-

out the paper, we will identify a rotor with an oscillator. Let xi = e
√
−1θi be

the position of the i-th rotor. Then, the dynamics of xi is completely deter-
mined by that of phase θi. In the absence of coupling, the phase equation
for θi is simply given by the decoupled ODE system:

dθi
dt

= Ωi, i.e., θi(t) = θi(0) +Ωit,
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where Ωi is the natural phase-velocity (frequency) and is assumed to be a
random variable extracted from the density function g = g(Ω):

g(−Ω) = g(Ω), supp(g) is bounded,∫
R
Ωg(Ω)dΩ = 0,

∫
R
g(Ω)dΩ = 1.

(2.1)

In the seminal work [20] of Kuramoto, he derived a coupled phase model
heuristically from the complex Ginzburg-Landau system. The KM is given
by

dθi
dt

= Ωi −
K

N

N∑
j=1

sin(θi − θj), t > 0, i = 1, · · · , N, (2.2)

subject to initial data:
θi(0) = θi0. (2.3)

Note that the first term on the R.H.S. of (2.2) represents the intrinsic
randomness, whereas the second term denotes the nonlinear attractive cou-
pling. Hence, synchronized states for system (2.2) will emerge, when the
nonlinear coupling dominates the intrinsic randomness.

Remark 2.1 The assumptions (2.1) are very crucial for our analysis after
this section. For example, in the hypothesis of Lemma 5.1, the coupling
strength K should be at least bigger than the diameter of natural frequen-
cies. For this, we need to assume that g has a compact support, which
guarantee K <∞.

The system (2.2) has been extensively studied over the last three decades,
and it remains a popular subject in nonlinear dynamics and statistical
physics (see review articles and a book [1,3,13,18,27,29]). In [19,20], Ku-
ramoto first observed that in the mean-field limit(N →∞), the system (2.2)
with a unimodal distribution function g(Ω) (which is assumed to be one-

humped and symmetric with respect to mean frequency Ωpc := 1
N

∑N
i=1Ωi)

has a continuous dynamical phase transition at a critical value of the cou-
pling strength Kcr :

Kcr =
2

πg(0)
, in the mean-field limit.

Moreover, he introduced an asymptotic order parameter r∞ ∈ [0, 1] to
measure the degree of the phase synchronization in mean-field limit:

r∞(K) := lim
t→∞

lim
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

e
√
−1θi(t)

∣∣∣∣∣ ,
and he observed that this quantity r∞ changes from zero to a non-zero
value, when the coupling strength K exceeds a critical value Kcr. Note
that for an initial phase configuration that is uniformly distributed on the
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interval [0, 2π), the quantity r∞ is exactly zero, whereas for a completely
synchronized configuration θi = θc for i = 1, · · · , N , r∞ becomes the unity.
Therefore we can regard r∞ as the “order parameter” measuring the degree
of synchronization. Before we conclude this subsection, we recall a complete
phase synchronization result from [14]. For this purpose, we introduce the
diameters of the phase and frequency configurations θ = (θ1, · · · , θN ), w =
(w1, · · · , wN ), and the natural frequency set as follows.

Dθ(t) := max
1≤i,j≤N

|θi(t)− θj(t)|, Dw(t) := max
1≤i,j≤N

|wi(t)− wj(t)|,

and
DΩ := max

1≤i,j≤N
|Ωi −Ωj |,

where wi(t) := θ̇i(t).

Proposition 2.1 [14] Suppose that the natural frequencies, the coupling
strength and initial configuration satisfy

DΩ = 0, K > 0, D0 := Dθ(0) < π,

and let θ = θ(t) be the smooth solution to the system (2.2)-(2.3) with initial
phase configuration θ0. Then we have

e−KtD0 ≤ Dθ(t) ≤ e−KαtD0, t ≥ 0, (2.4)

where α is the positive constant only depending on the diameter of the initial
phase configuration given by

α :=
sinD0

D0
.

We also recall the estimate of existence of a trapping region for non-
identical oscillators from [10] as follows.

Proposition 2.2 [10] Let θ = θ(t) be the global smooth solution to (2.2)-
(2.3) satisfying

0 < D0 < π, DΩ > 0, K > Ke :=
DΩ

sinD0
. (2.5)

Then we obtain

(i) sup
t≥0

Dθ(t) ≤ D0 < π.

(ii) ∃ t0 > 0 such that sup
t≥t0

Dθ(t) ≤ D∞,

where D∞ is defined by

D∞ := arcsin

[
DΩ

K

]
∈
(

0,
π

2

)
.

Furthermore we have

Dw(t0)e−K(t−t0) ≤ Dw(t) ≤ Dw(t0)e−K(cosD∞)(t−t0), t ≥ t0.
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Remark 2.2 1. Let Ωi1 , . . . , Ωi` be the distinct natural frequencies, and
{P1, · · · ,P`} be the partition of the set {1, · · · , N} such that Pk := {j :
Ωj = Ωik}. Then it follows from [10] that if the initial configurations satisfy
(2.5), we have

lim
t→∞

θi(t) = lim
t→∞

θj(t) for all i, j ∈ Pk, k ∈ {1, · · · , `}.

2. If we set the average phase and natural frequency of the particles as

θpc (t) :=
1

N

N∑
i=1

θi(t), Ωpc :=
1

N

N∑
i=1

Ωi,

then from the particle KM (2.2), one can easily obtain

θpc (t) = θpc (0) +Ωpc t, for all t ≥ 0.

Without loss of generality, we may assume that Ωpc = 0 using the phase-
shift framework. Then we notice that identical and non-identical oscillators
satisfying the assumptions in Propositions 2.1 and 2.2 satisfy{
θi(t)→ θc(0) as t→∞, for identical oscillators,
θi(t) ∈ (θpc (0)−D∞, θpc (0) +D∞) for t ≥ t0, for non-identical oscillators.

Note that the conditions and decay estimates (2.4) are independent of the
particle-number N . For the related synchronization estimates for the KM,
we refer to [10–12,15,17,23,24].

We rewrite the system (2.2) as a dynamical system on the extended
phase space T× R for (θi, Ωi) : For i = 1, · · · , N ,

dθi
dt

= Ωi −
K

N

N∑
j=1

sin(θi − θj),
dΩi
dt

= 0, t > 0. (2.6)

Throughout this paper, we will use the interval [0, 2π) to denote T =
R/2πZ, i.e., θ ∈ [0, 2π) implies that θ satisfies θ + 2πZ = θ.

3 Existence theory of measure valued solutions

In this section, we briefly review the existence of measure valued solutions
to (1.1). For the KM, the rigorous mean-field limit was first done by Lancel-
lotti [21] using Neunzert’s general theory for the Vlasov equation [25,28].
Optimal transport arguments allow to generalize these results in several
ways for granular and flocking models [2,6]. H. Chiba recently obtained
the same mean-field limit based on functional tools [9]. For a later use
and reader’s convenience, we present several estimates for measure valued
solutions to the KKE.
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3.1 Measure-theoretic framework

In this subsection, we discuss a measure-theoretic formulation of the KKE.

LetM([0, 2π)×R) be the set of nonnegative Radon measures on [0, 2π)×
R, which can be regarded as nonnegative bounded linear functionals on
C0([0, 2π) × R). For a Radon measure ν ∈ M([0, 2π) × R), we use the
standard duality relation:

〈ν, h〉 :=

∫ 2π

0

∫
R
h(θ,Ω)ν(dθ, dΩ), h ∈ C0([0, 2π)× R),

where C0 denotes the set of continuous functions vanishing at infinity. Note
that since θ ∈ [0, 2π) is a 2π-periodic variable, h(θ,Ω) is a 2π-periodic
function with respect to θ on [0, 2π)×R. We set Cw([0, T );M([0, 2π)×R))
a space of all weakly continuous time-dependent measures. Then definition
of a measure-valued solution to equation (1.1) is given as follows.

Definition 1 For T ∈ [0,∞), let µ ∈ Cw([0, T );M([0, 2π)×R)) be a mea-
sure valued solution to (1.1) with an initial Radon measure µ0 ∈M([0, 2π)×
R) if and only if µ satisfies the following conditions:

1. µ is weakly continuous:

〈µt, h〉 is continuous as a function of t, ∀ h ∈ C0([0, 2π)× R).

2. µ satisfies the integral equation: ∀ h ∈ C1
0([0, 2π)× R× [0, T )),

〈µt, h(·, ·, t)〉 − 〈µ0, h(·, ·, 0)〉 =

∫ t

0

〈µs, ∂sh+ ω[µ]∂θh〉ds, (3.1)

where ω[µ](θ,Ω, s) is defined by

ω[µ](θ,Ω, s) := Ω −K(µs ∗ sin)θ . (3.2)

Here ∗ denotes the standard convolution, i.e.,

(µs ∗ sin)θ =

∫ 2π

0

∫
R

sin(θ − θ∗)µs(dθ∗, dΩ).

Remark 3.1 (i) Let f = f(θ,Ω, t) be a classical solution to (1.1). Then the
measure µ := fdΩdθ is a measure valued solution to (1.1).

(ii) Note that the empirical measure

µNt =
1

N

N∑
i=1

δθi(t) ⊗ δΩi(t), where (θi(t), Ωi(t)) is a solution of (2.6) ,

is a measure valued solution to (1.1) in the sense of Definition 3.1. Thus, the
solutions to the KM (2.2) can be treated as measure valued solutions via
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an empirical measure. Here, δz∗ is the Dirac measure concentrated at z = z∗.

(iii) Since the density function g(Ω) has a compact support and the dy-
namics (1.1) only governs the θ-variable, we can see that the projected
Ω-support of µt also has a compact support as well. Under the assumption
of the compact support of g, we can expand the class of test functions to
C([0, 2π)× R).

(iv) By choosing h = Ω in (3.1) (see above comment in (iii)), we have

〈µt, Ω〉 = 〈µ0, Ω〉, t > 0.

(v) As we mentioned before, θ ∈ [0, 2π) is regarded as a 2π-periodic variable,
i.e., θ + 2πZ = θ. Thus we can consider h = θ a test function.

Lemma 3.1 Suppose that the density function g = g(Ω) has a compact
support and the initial measure satisfies

〈µ0, Ω〉 = 0,

and let µ ∈ Cw([0, T );M([0, 2π)×R)) be a measure valued solution to (1.1).
Then for t ≥ 0, we have

〈µt, 1〉 = 〈µ0, 1〉 = 1, 〈µt, θ〉 = 〈µ0, θ〉, t ≥ 0.

Proof We first notice from Remark 3.1 that the class of test functions can
be expand to C([0, 2π)×R). This yields that we can use h = 1 in (3.1). Then,
the R.H.S. of (3.1) will be zero hence, we have conservation of total mass.
For the time evolution of the first moment of θ, it follows from Remark 3.1
(iv) that

〈µt, Ω〉 = 0, t > 0.

We now set h(θ) = θ in (3.1) and use (3.2) to get

〈µt, θ〉 = 〈µ0, θ〉+

∫ t

0

〈µs, ω[µs]〉ds

= 〈µ0, θ〉+

∫ t

0

(
〈µs, Ω〉 −K〈µs, (µs ∗ sin)θ〉

)
ds

= 〈µ0, θ〉 −K
∫ t

0

〈µs, (µs ∗ sin)θ〉ds = 〈µ0, θ〉,

where we used the anti-symmetry of sin(θ−θ∗) to determine that 〈µs, (µs ∗
sin)θ〉 = 0.
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3.2 A priori local stability estimate and approximate solutions

In this part, we recall the stability estimate for measure valued solutions
to (1.1) in the bounded Lipschitz distance, and present that the measure
valued solutions to the KKE can be approximated as a sum of Dirac mea-
sures.

The stability estimate is crucial to the global existence of a measure
valued function for the KKE. First, we review the definition of the bounded
Lipschitz distance presented in [16,25,28]. We define the admissible set S
of test functions as

S :=
{
h : [0, 2π)× R→ R : ‖h‖L∞ ≤ 1, Lip(h) ≤ 1

}
,

where

Lip(h) := sup
(θ1,Ω1)6=(θ2,Ω2)

|h(θ1, Ω1)− h(θ2, Ω2)|
|(θ1, Ω1)− (θ2, Ω2)|

.

Definition 2 [25,28] Let µ, ν ∈ M([0, 2π) × R) be two Radon measures.
Then the bounded Lipschitz distance d(µ, ν) between µ and ν is given by

d(µ, ν) := sup
h∈S

∣∣∣〈µ, h〉 − 〈ν, h〉∣∣∣.
Remark 3.2 The space of Radon measures M([0, 2π) × R) equipped with
the metric d(·, ·) is a complete metric space.

Remark 3.3 The bounded Lipschitz distance d for compactly supported
probability measures is equivalent to the Kantorovich-Rubinstein distance
W1 (see [28]):

W1(µ, ν) := inf
γ∈Π(µ,ν)

∫ 2π

0

∫
R

∫ 2π

0

∫
R
|(θ− θ∗, Ω−Ω∗)| γ(d(θ,Ω), d(θ∗, Ω∗)),

where Π(µ, ν) is the set of all product measures on ([0, 2π)×R)× ([0, 2π)×
R) such that their marginals are µ and ν, respectively. Both equivalent
distances endow the weak-∗ convergence of measures with metric structure
in bounded sets.

Remark 3.4 For any h ∈ C([0, 2π) × R) with ‖h‖L∞ ≤ a and Lip(h) ≤ b,
we have ∣∣∣〈µ, h〉 − 〈ν, h〉∣∣∣ ≤ max{a, b}d(µ, ν).

We next present that a measure valued solution to the KKE can be
approximated as a sum of Dirac measures using a Lancellotti’s argument
[21].

Proposition 3.1 [21] 1. For any µ0 ∈ M([0, 2π)× R), the equation (1.1)
has a unique solution µ ∈ Cw(0, T ;M([0, 2π)× R)) with initial data µ0.
2. Let µt, νt ∈ Cw(0, T ;M([0, 2π)×R)) be two solutions to the equation (1.1)
with initial data µ0, ν0 ∈ M([0, 2π) × R), respectively. Then there exists a
constant C > 0 depending on T such that

d(µt, νt) ≤ Cd(µ0, ν0).
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We note that Proposition 3.1 can be extended using a simple approximation
argument of measures by smooth positive densities as follows.

Theorem 3.1 For any µ0 ∈ M([0, 2π) × R), let µt be a unique measure
valued solution to KKE (1.1) with initial data µ0. Then µt can be approxi-
mated as a sum of Dirac measures of the form:

µNt =
1

N

N∑
i=1

δθi(t) ⊗ δΩi(t).

Furthermore, there holds

d(µt, µ
N
t )→ 0, as N →∞.

Proof Although this proof can be easily obtained from Proposition 3.1 by
a density argument, we give the details in Appendix A for reader sake.

From now on, let us assume that the initial measure is a smooth ab-
solutely continuous measure with respect to Lebesgue with connected sup-
port. These assumptions can be eliminated by standard mollifier approxi-
mation as above. Therefore, we will proceed by working on smooth solutions
and obtaining estimates depending only on quantities that pass to the limit
in the weak-∗ sense, and thus, stable estimates under this approximation.
To avoid too much repetition, this procedure will not be specified in the
proofs below and the statements of the results will be written directly for
measure valued solutions.

4 Asymptotic complete synchronization estimate

In this section, we present an asymptotic synchronization estimate for the
KKE (1.1) by lifting corresponding results for the KM (2.2) using the ar-
gument of the particle-in-cell method [26] discussed in the previous section.

Let µ ∈ Cw([0, T );M([0, 2π)×R)) be a measure valued solution to (1.1),
and let R(t) and P (t) be the orthogonal θ and Ω-projections of supp(µt)
respectively, i.e.,

R(t) := Pθsupp(µt) = { θ ∈ [0, 2π) : (θ,Ω) ∈ supp(µt)},
P (t) := PΩsupp(µt) = {Ω ∈ R : (θ,Ω) ∈ supp(µt)}.

Then it is easy to see that

P (t) = P (0), t ≥ 0.

We also set

Dθ(µt) := diam(R(t)), DΩ(µt) := diam(P (t)), M(t) := 〈µt, 1〉,

θc(t) :=
1

M(t)
〈µt, θ〉, Ωc(t) :=

1

M(t)
〈µt, Ω〉,
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where diam(A) := supx,y∈A |x− y| for A ⊂ R. We observe from Lemma 3.1
that

M(t) = 〈µt, 1〉 = 〈µ0, 1〉 = M(0) = 1,

and since Ωc(0) = 0, we obtain

Ωc(t) = 0 and θc(t) = θc(0), t ≥ 0.

Lemma 4.1 Suppose that the oscillators are identical, i.e., g(Ω) = δΩc(0)(Ω),
and let µ0 be a given initial measure in M([0, 2π)× R) satisfying

〈µ0, θ〉 = π, Dθ(µ0) < π, K > 0.

Then the measure valued solution µ to (1.1) - (1.2) with an initial datum
µ0 satisfies

Dθ(µt) ≤ Dθ(µ0)e−Kᾱt, t ≥ 0,

where

ᾱ =
sinDθ(µ0)

Dθ(µ0)
.

Proof We use the approximation argument in Theorem 3.1 giving the initial
particle approximation µN0 defined as in (A.1). Then, it follows from Propo-
sition 2.1 that the approximate measure valued solution µNt ∈M([0, 2π)×
R) satisfies

Dθ(µ
N
t ) ≤ Dθ(µ

N
0 )e−KᾱN t, t ≥ 0,

where

ᾱN =
sinDθ(µ

N
0 )

Dθ(µN0 )
.

Since Theorem 3.1 implies that d(µt, µ
N
t ) → 0 as N → ∞. Hence,

Dθ(µ
N
t )→ Dθ(µt) as N →∞ and we obtain the desired result.

Remark 4.1 Throughout the paper, without loss of generality, we assume
that 〈µ0, θ〉 = π in order to avoid any possible confusion arising from the
periodicity of θ. In fact, if the oscillators satisfy the assumption in Lemma
4.1 (or Lemma 5.1), the orthogonal θ-projection of supp(µt), R(t) is con-
fined to the interval (0, 2π) for all t ≥ 0 (see Remark 2.2). This property
will also be significantly used in Section 5 (see Lemma 5.2).

We now show that the measure valued solution to the system (1.1)
for identical oscillators will converge to a multiple of the Dirac measure
concentrated on (θc(0), Ωc(0)) in the phase space (θ,Ω). We set

µ∞(dθ, dΩ) := δθc(0)(θ)⊗ δΩc(0)(Ω).

Theorem 4.1 Suppose that the oscillators are identical, i.e., g(Ω) = δΩc(0)(Ω),
and let µ0 ∈M([0, 2π)×R) be a given initial probability measure satisfying

θc(0) = π, Dθ(µ0) < π and K > 0.

Then the measure valued solution µt to (1.1) with initial datum µ0 satisfies

lim
t→∞

d(µt, µ∞) = 0,

where d = d(·, ·) is the bounded Lipschitz distance defined in Section 3.



12

Proof Since the oscillators are identical (g(Ω) = δΩc(0)(Ω)), it is enough to
consider a test function of one variable θ for the convergence estimate of
the measure value solution. Let h = h(θ) ∈ C([0, 2π)) be any test function
satisfying

‖h‖L∞ ≤ 1, Lip(h) ≤ 1.

Note that h can also be regarded as a test function in C([0, 2π)×R). Then
we have∣∣∣ ∫

[0,2π]×R
h(θ)µt(dθ, dΩ)−

∫
[0,2π]×R

h(θ)µ∞(dθ, dΩ)
∣∣∣

=
∣∣∣ ∫ 2π

0

h(θ)µ̄t(dθ)− h(π)
∣∣∣ ≤ ∫ 2π

0

|θ − π|µ̄t(dθ) ≤ Dθ(µ0)e−Kᾱt.

where we used Lemma 4.1, and µ̄t(dθ) is a θ-marginal of the measure µt,
i.e.,

µ̄t(dθ) :=

∫
R
µt(dθ, dΩ).

This implies that

d(µt, µ∞) ≤ Dθ(µ0)e−Kᾱt → 0, as t→∞.

5 Stability estimate of the KKE

In this section, we present the strict contractivity of measure valued solu-
tions to the KKE by using the method of optimal mass transport [8,22,30].
The strict contractivity result generalizes the L1-contraction result for the
KM in [10].

5.1 Alternative formulation of the KKE

In this part, we derive an alternative form of the KKE, which is more
convenient for deriving estimates in terms of the Wasserstein distance. First,
we study the existence of an invariant set for the KKE.

Lemma 5.1 Suppose that the initial probability measure µ0 and the cou-
pling strength K satisfy

0 < Dθ(µ0) < π, 0 < DΩ(µ0) <∞, K >
DΩ(µ0)

sinDθ(µ0)
.

Then, there exist t0 > 0 and D∞ ∈ (0, π2 ) such that the measure valued
solution µ to (1.1) with initial datum µ0 satisfies

Dθ(µt) ≤ D∞, t ≥ t0.
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Proof We apply the argument similar to that in the proof of Lemma 4.1.
Let N > 0 be given. Then we have the following approximation µN0 for µ0:

µN0 =
1

N

N∑
i=1

δθi0 ⊗ δΩi0 .

We now solve the Cauchy problem for KM:
dθi
dt

= Ωi +
K

N

N∑
j=1

sin(θj − θi), t > 0,

dΩi
dt

= 0.

subject to initial data (θi(0), Ωi(0)) = (θi0, Ωi0). Theorem 3.1 implies that

d(µt, µ
N
t )→ 0 as N →∞ ,

and thus, Dθ(µ
N
t ) → Dθ(µt) and DΩ(µNt ) → DΩ(µt) as N → ∞. Hence

we can take N large enough such that DΩ(µN0 ) and Dθ(µ
N
0 ) satisfies the

conditions of Proposition 2.2. Thus, we find that there exist tN0 > 0 and
D∞,N such that

Dθ(µ
N
t ) ≤ D∞,N , t ≥ tN0 , for N large enough,

where

tN0 :=
Dθ(µ

N
0 )−D∞,N

K sinDθ(µN0 )−DΩ(µN0 )
, D∞,N := arcsin

[
DΩ(µN0 )

K

]
∈
(

0,
π

2

)
.

We now let N →∞ to obtain the desired result.

In the remainder of this section, from Remark 4.1, we assume that

R(t) ⊂
(
0, 2π

)
and t ≥ 0. (5.1)

Under this assumption the solution is given by a smooth particle density
function f(θ,Ω, t) in L1 for all t ≥ 0. For a given Ω, we consider a one-
particle density function f as a function of θ. Then we define the pseudo
cumulative distribution function of f :

F (θ,Ω, t) :=

∫ θ

0

f(θ∗, Ω, t)dθ̃, (θ,Ω, t) ∈ [0, 2π)× R× R+,

and a pseudo-inverse φ of F (·, Ω, t) as a function of θ:

φ(η,Ω, t) := inf{θ : F (θ,Ω, t) > η}, η ∈ [0, g(Ω)].

As long as there is no confusion, we use the notation F−1(η,Ω, t) = φ as
the pseudo inverse of F as θ-function. Then it is easy to see that

F (φ(η,Ω, t), Ω, t) = η. (5.2)
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Lemma 5.2 Let µ be a measure-valued solution to (1.1)-(1.2), and let φ
be the pseudo-inverse function of the cumulative distribution function F .
Then we have

(i) max{θ | θ ∈ R(t)} = max
Ω∈supp(g)

φ(g(Ω), Ω, t).

(ii) min{θ | θ ∈ R(t)} = min
Ω∈supp(g)

φ(0, Ω, t).

(iii) max
Ω∈supp(g)

φ(g(Ω), Ω, t)− min
Ω∈supp(g)

φ(0, Ω, t) ≤ D∞, t ≥ t0.

Proof Since the estimate for (ii) is similar to that of (i) and the estimate
for (iii) follows from the estimates (i) and (ii), we only provide the proof
for the estimate (i). For notational simplicity, we set

θM := max{θ | θ ∈ R(t)}.

Then, by definition of µt, we have

θM = max{θ | θ ∈ suppθ(f(θ,Ω, t)) and Ω ∈ supp(g)},

where suppθ(f(θ,Ω, t)) is the θ-projection of supp(f(θ,Ω, t)). This yields

θM = max{φ(g(Ω), Ω, t) such that Ω ∈ supp(g)},

by definition of the pseudo-inverse function. This completes the proof.

Next, we derive an integro-differential equation for the pseudo inverse
φ. It follows from (5.1) that the smooth solution f(θ,Ω, t) to (1.1)-(1.2)
satisfies

f(0, Ω, t) = 0, Ω ∈ R, t ≥ 0.

We differentiate the relation (5.2) in t and use ∂θF = f to get

∂tF (θ,Ω, t)
∣∣∣
θ=φ(η,Ω,t)

+ f(θ,Ω, t)
∣∣∣
θ=φ(η,Ω,t)

∂tφ(η,Ω, t) = 0.

This yields

∂tφ(η,Ω, t)

= − 1

f(θ,Ω, t)
∂tF (θ,Ω, t)

∣∣∣
θ=φ(η,Ω,t)

=
1

f(θ,Ω, t)

∣∣∣
θ=φ(η,Ω,t)

× (ω[f ]f)(·, Ω, t)
∣∣∣θ=φ(η,Ω,t)

θ=0

= Ω +K

∫
R

∫ 2π

0

sin(θ∗ − φ(η,Ω, t))f(θ∗, Ω∗, t)dθ∗dΩ∗ using (5.1)

= Ω +K

∫
R

∫ g(Ω∗)

0

sin(φ(η∗, Ω∗, t)− φ(η,Ω, t))dη∗dΩ∗,
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where we used θ∗ = φ(η∗, Ω∗, t) and relation (5.2) to see f(θ∗, Ω∗, t)dθ∗ =
dη∗. Hence, the pseudo-inverse φ satisfies the following integro-differential
equation:

∂tφ = Ω +K

∫
R

∫ g(Ω∗)

0

sin(φ∗ − φ)dη∗dΩ∗. (5.3)

where we used abbreviated notations:

φ∗ := φ(η∗, Ω∗, t), φ := φ(η,Ω, t).

The following results is a simple consequence of the change of variables and
Lemma 3.1.

Lemma 5.3 Let µt be a measure valued solution to (1.1) - (1.2) with an
associated pseudo-inverse function φ. Then, we have∫

R

∫ g(Ω)

0

φdηdΩ =

∫
R

∫ 2π

0

θµt(dθ, dΩ),
d

dt

∫
R

∫ g(Ω)

0

φdηdΩ = 0.

5.2 Strict contractivity in the Wasserstein distance

In this part, we present the proof of the strict contraction property of the
KKE.

For the one-dimensional case, it is well known [8,30] that the Wasserstein
p-distance Wp(µ1, µ2) between two measures µ1 and µ2 is equivalent to the
Lp-distance between the corresponding pseudo-inverse functions φ1 and φ2

respectively. Thus, we set

Wp(µ1, µ2)(Ω, t) := ‖φ1(·, Ω, t)− φ2(·, Ω, t)‖Lp(0,g(Ω)), 1 ≤ p ≤ ∞.

Since Wp(µ1, µ2) depends on Ω, we introduce a modified metric on the
phase-space (θ,Ω):

W̃p(µ1, µ2)(t) := ||Wp(µ1, µ2)(·, t)||Lp(R), 1 ≤ p ≤ ∞.

Below, we assume that the density function g(Ω) has compact support.

Then, it is easy to see that W̃p(µ1, µ2) is a metric that satisfies

lim
p→∞

W̃p(µ1, µ2)(t) = W̃∞(µ1, µ2)(t), t ≥ 0. (5.4)

Recall that the sgn function is defined by

sgn(x) =

1, x > 0,
0, x = 0,
−1, x < 0.
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Lemma 5.4 Let Φ be a measurable function defined on [0, g(Ω)] × R sat-
isfying

|Φ(η,Ω)| < π

2
and

∫
R

∫ g(Ω)

0

Φ(η,Ω)dηdΩ = 0.

Then for 1 ≤ p <∞, we have∫
R

∫
R

∫ g(Ω)

0

∫ g(Ω∗)

0

[
|Φ(η,Ω)|p−1sgn(Φ(η,Ω))− |Φ(η∗, Ω∗)|p−1sgn(Φ(η∗, Ω∗))

]
× sin(

Φ(η∗, Ω∗)− Φ(η,Ω)

2
)dη∗dηdΩ∗dΩ ≤ −

2

π

∫
R

∫ g(Ω)

0

|Φ(η)|pdηdΩ.

Proof For notational simplicity, we set

Φ := Φ(η,Ω), Φ∗ := Φ(η∗, Ω∗), and

∆(η, η∗, Ω,Ω∗) :=
[
|Φ|p−1sgn(Φ)− |Φ∗|p−1sgn(Φ∗)

]
sin
(Φ∗ − Φ

2

)
,

and we decompose the domain [0, g(Ω)] × R as the disjoint union of three
subsets:

P := {(η,Ω) | Φ(η,Ω) > 0}, Z := {(η,Ω) | Φ(η,Ω) = 0},

and

N := {(η,Ω) | Φ(η,Ω) < 0}.

Then it follows from the condition
∫
R
∫ g(Ω)

0
ΦdηdΩ = 0 that∫

P
|Φ|dηdΩ =

∫
N
|Φ|dηdΩ. (5.5)

We use [0, g(Ω)]× R = P ∪ Z ∪N to obtain∫
R

∫
R

∫ g(Ω∗)

0

∫ g(Ω)

0

∆(η, η∗, Ω,Ω∗)dηdη∗dΩdΩ∗

=
(∫
P×Z

+ · · ·
∫
N×P︸ ︷︷ ︸

distinct signs

+

∫
P×P

+

∫
N×N

+

∫
Z×Z︸ ︷︷ ︸

same signs

)
∆(η, η∗, Ω,Ω∗)dηdη∗dΩdΩ∗

We now consider the following sub-integrals separately.

I(A,B) :=

∫
A×B

∆(η, η∗, Ω,Ω∗)dηdη∗dΩdΩ∗, A,B ∈ {P,Z,N}.

We claim the following:
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Case A B I(A,B) ≤
I P Z −L(Z)

π

∫
P |Φ∗|

pdη∗dΩ∗

II N Z −L(Z)
π

∫
N |Φ∗|

pdη∗dΩ∗

III Z P −L(Z)
π

∫
P |Φ|

pdηdΩ

IV Z N −L(Z)
π

∫
N |Φ|

pdηdΩ

V P N − 1
π

[
L(P)

∫
N |Φ|

pdηdΩ + L(N )
∫
P |Φ∗|

pdη∗dΩ∗

+
∫
N |Φ|

p−1dηdΩ
∫
P |Φ∗|dη∗dΩ∗

+
∫
P |Φ∗|

p−1dη∗dΩ∗
∫
N |Φ|dηdΩ

]
VI N P − 1

π

[
L(N )

∫
P |Φ|

pdηdΩ + L(P)
∫
N |Φ∗|

pdη∗dΩ∗

+
∫
P |Φ|

p−1dηdΩ
∫
N |Φ∗|dη∗dΩ∗

+
∫
N |Φ∗|

p−1dη∗dΩ∗
∫
P |Φ|dηdΩ

]
VII P P − 1

π

[
L(P)

∫
P |Φ|

pdηdΩ + L(P)
∫
P |Φ∗|

pdη∗dΩ∗

−
∫
P |Φ|

p−1dηdΩ
∫
P |Φ∗|dη∗dΩ∗

−
∫
P |Φ∗|

p−1dη∗dΩ∗
∫
P |Φ|dηdΩ

]
VIII N N − 1

π

[
L(N )

∫
N |Φ|

pdηdΩ + L(N )
∫
N |Φ∗|

pdη∗dΩ∗

−
∫
N |Φ|

p−1dηdΩ
∫
N |Φ∗|dη∗dΩ∗

−
∫
N |Φ∗|

p−1dη∗dΩ∗
∫
N |Φ|dηdΩ

]
IX Z Z 0

where L(A) denotes the Lebesgue measure of the set A:

L(A) :=

∫
A

1dηdΩ.

We also note that

L(P) + L(Z) + L(N ) =

∫
R

∫ g(Ω)

0

1dηdΩ =

∫
R
g(Ω)dΩ = 1.

Case I: In this case, we use the definition of ∆(η, η∗, Ω,Ω∗) and the in-
equality

sinx ≥ 2

π
x, for x ∈

[
0,
π

2

]
,

to determine that

∆(η, η∗, Ω,Ω∗) = −|Φ∗|p−1 sin
|Φ∗|

2
≤ − 1

π
|Φ∗|p.

This yields

I(P,Z) ≤ − 1

π

∫
P×Z

|Φ∗|pdηdη∗dΩdΩ∗ = −L(Z)

π

∫
P
|Φ∗|pdη∗dΩ∗.
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Case II - Case IV: The estimates are basically the same as in Case I.
Hence, we omit their estimates.

Case V: In this case, we have

∆(η, η∗, Ω,Ω∗) = −(|Φ|p−1 + |Φ∗|p−1) sin

(
|Φ∗|+ |Φ|

2

)
≤ − 1

π

(
|Φ|p + |Φ∗|p + |Φ|p−1|Φ∗|+ |Φ∗|p−1|Φ|

)
.

This yields the desired result.
Case VI: Once we interchange P ←→ N , the same estimate holds.

Case VII: In this case, we need to consider two subcases:

Either Φ > Φ∗ > 0 or Φ∗ ≥ Φ > 0.

By considering each case, we have

∆(η, η∗, Ω,Ω∗) =
(
|Φ|p−1 − |Φ∗|p−1

)
sin
(Φ∗ − Φ

2

)
≤ 1

π

(
|Φ|p−1 − |Φ∗|p−1

)
(|Φ∗| − |Φ|)

= − 1

π

(
|Φ|p + |Φ∗|p − |Φ|p−1|Φ∗| − |Φ∗|p−1|Φ|

)
.

This yields the desired result.

Case VIII:: The estimate is exactly the same as in Case VII. Hence we
omit its proof.

Case IX:: The estimate is trivial.

We now add all cases and use (5.5) to find∫
R

∫
R

∫ g(Ω∗)

0

∫ g(Ω)

0

∆(η, η∗, Ω,Ω∗)dηdη∗dΩdΩ∗

≤ − 2

π

(
L(P) + L(Z) + L(N )

)∫
R

∫ g(Ω)

0

|Φ|pdηdΩ

= − 2

π

∫
R

∫ g(Ω)

0

|Φ|pdηdΩ.

Theorem 5.1 Suppose that two initial measures µ0, ν0 ∈ M([0, 2π)× R)
and K satisfy

(i) 0 < Dθ(ν0) ≤ Dθ(µ0) < π,

∫
[0,2π]×R

θµ0(dθ, dΩ) =

∫
[0,2π]×R

θν0(dθ, dΩ) = π.

(ii) K > DΩ(µ0) max
{ 1

sinDθ(µ0)
,

1

sinDθ(ν0)

}
,
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and let µt and νt be two measure valued solutions to (1.1) - (1.2) corre-
sponding to initial data µ0 and ν0, respectively. Then, there exists t0 > 0
such that

W̃p(µt, νt) ≤ exp
[
− 2K cosD∞

π
(t− t0)

]
W̃p(µt0 , νt0), t > t0, 1 ≤ p ≤ ∞.

Proof First, we consider the case where p ∈ [1,∞). Note that the Wasser-
stein distance in one-space dimension is equivalent to the Lp-distance of
its corresponding pseudo inverse distribution function. Remember that we
are assuming that the solutions are smooth, hence it is more convenient to
obtain the Lp-estimate from equation (5.3). Denoting by φi, i = 1, 2 the
pseudo inverse functions associated to µt and νt respectively, we get

∂tφi = Ω +K

∫
R

∫ g(Ω∗)

0

sin(φi∗ − φi)dη∗dΩ∗ ,

for i = 1, 2. Then the above equations imply that

∂t(φ1 − φ2) = K

∫
R

∫ g(Ω∗)

0

(
sin(φ1∗ − φ1)− sin(φ2∗ − φ2)

)
dη∗dΩ∗,

= 2K

∫
R

∫ g(Ω∗)

0

cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
sin

(
φ1∗ − φ1

2
− φ2∗ − φ2

2

)
dη∗dΩ∗.

(5.6)

We multiply (5.6) by psgn(φ1−φ2)|φ1−φ2|p−1 and integrate over [0, g(Ω)]×
R using the symmetry (η,Ω)⇐⇒ (η∗, Ω∗) to obtain

d

dt
||φ1 − φ2||pLp

= 2pK

∫
R

∫
R

∫ g(Ω)

0

∫ g(Ω∗)

0

[
cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
sin

(
φ1∗ − φ1

2
− φ2∗ − φ2

2

)
×
[
|φ1 − φ2|p−1sgn (φ1 − φ2)− |φ1∗ − φ2∗|p−1sgn (φ1∗ − φ2∗)

] ]
dη∗dηdΩ∗dΩ.

It follows from the proof of Lemma 5.4 that for all a, b ∈ R,(
|a|p−1sgn(a)− |b|p−1sgn(b)

)
sin

(
b− a

2

)
≤ 0.

On the other hand, Lemma 5.1 implies that there exists t0 such that

Dθ(µt) ≤ D∞, Dθ(νt) ≤ D∞, t ≥ t0,

and we use Lemma 5.2 to obtain

max
Ω∈supp(g)

φ1(g(Ω), Ω, t)− min
Ω∈supp(g)

φ1(0, Ω, t) ≤ D∞,

max
Ω∈supp(g)

φ2(g(Ω), Ω, t)− min
Ω∈supp(g)

φ2(0, Ω, t) ≤ D∞, t ≥ t0.
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Then, this yields

0 < cosD∞ ≤ cos

(
φ1∗ − φ1

2
+
φ2∗ − φ2

2

)
.

Hence, we obtain

d

dt
||φ1 − φ2||pLp ≤ 2pK cosD∞J

where

J :=

∫
R×R

∫ g(Ω)

0

∫ g(Ω∗)

0

sin

(
φ1∗ − φ2∗

2
− φ1 − φ2

2

)
×
[
|φ1 − φ2|p−1sgn (φ1 − φ2)− |φ1∗ − φ2∗|p−1sgn (φ1∗ − φ2∗)

]
dη∗dηdΩ∗dΩ.

If we set Φ := φ1 − φ2, then

|Φ∗ − Φ| ≤ |φ1∗ − φ1|+ |φ2∗ − φ2| ≤ 2D∞ < π, t > t0.

Since µ0, ν0 have the same center of mass, it follows from Lemma 5.3 that∫
R

∫ g(Ω)

0

ΦdηdΩ = 0, t > t0.

Thus, we can apply Lemma 5.4 with Φ = φ1 − φ2 to obtain

d

dt
W̃ p
p (µt, νt) ≤ −

2pK cosD∞

π
W̃ p
p (µt, νt), t ≥ t0.

This yields

W̃p(µt, νt) ≤ exp
(
− 2K cosD∞

π
(t− t0)

)
W̃p(µt0 , νt0). (5.7)

In the case of p =∞, we use (5.4) and (5.7) to obtain

W̃∞(µt, νt) ≤ exp
(
− 2K cosD∞

π
(t− t0)

)
W̃∞(µt0 , νt0).

This completes the proof for smooth solutions. As mentioned above a simple
approximation argument as in Subsection 3.3 finishes the proof for measure
valued solutions.

Corollary 5.1 There exists a unique stationary state µ∞ in the set of mea-
sures µ0 satisfying the assumptions in Theorem 5.1. Moreover, given any
measure µ0 in that set, we have

W̃p(µt, µ∞) ≤ exp
[
−2K cosD∞

π
(t−t0)

]
W̃p(µt0 , µ∞), t > t0, 1 ≤ p ≤ ∞.

Furthermore, this stationary state satisfies that ω[µ∞] = 0.
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Proof This is an easy consequence of Theorem 5.1 and the continuity in time
of the solutions, see [4] for more details. For the asymptotic behaviour of the
measure valued solutions µt, we can show that the support of the velocity
field associated to µt shrinks to a single point exponentially fast using a
similar argument as in the proof of Lemma 5.1 together with Proposition
2.2. This means that ω[µ∞] = 0.

Remark 5.1 The assumption in Theorem 5.1 on the initial measures to
have equal mean in θ is not restricted. Due to Lemma 5.3, the mean in θ is
preserved in time. Thus, we can always restrict to the equal mean in θ case
by translational invariance of (1.1).

A Proof of Theorem 3.1

In this part, we provide the details for the proof of Theorem 3.1.

For given µ0 ∈M([0, 2π)× R), we set for 0 < ε < 1,

µ̃ε0 := ((1−ε)µ0+εχR)∗ηε =

∫
[0,2π]×R

η1ε(θ−θ̃) η2ε(Ω−Ω̃) ((1−ε)µ0+εχR)(dθ̃, dΩ̃),

where ηε = (η1ε , η
2
ε), η1ε is a periodic compactly supported mollifier with period 2π

and η2ε is a standard compactly supported mollifier satisfying ‖η1ε‖L1([0,2π]) = 1,

‖η2ε‖L1(R) = 1, and χR is the uniform probability measure on rectangle R enclosing
supp(µ0) such thatR ⊂ [0, 2π]×[−C,C] with C > 0, where supp(µ0) is the smallest
closed set D ⊂ [0, 2π)×R such that µt(D) = 1, i.e., supp(µ0) = cl{z ∈ [0, 2π)×R :
µ0(B(z, r)) > 0 for all r > 0}. It is straightforward to check that

d(µ̃ε0, µ0) 'W1(µ̃ε0, µ0)→ 0, as ε→ 0

and supp(µ̃ε0) ⊂ [0, 2π]× [−Cε, Cε].
We remark that if supp(µ0) ⊂ (0, 2π) × [−C,C], then supp(µ̃ε0) ⊂ (0, 2π) ×

[−Cε, Cε] using a standard compactly supported mollifier ηε for sufficiently small
ε. Since µ̃ε0 is absolutely continuous with respect to Lebesgue measure dθdΩ and
with connected support, then for all ε the initial approximated measure µ̃ε0 can
be approximated by a Dirac comb of uniform masses. This means that there exist

point distributions {(θε,Ni0 , Ωε,Ni0 )}i=1,...,N , whose dependence on N is elapsed for
clarity, such that

lim
N→∞

d(µ̃ε0, µ̃
ε,N
0 ) = 0, µ̃ε,N0 :=

1

N

N∑
i=1

δθε,Ni0
⊗ δΩε,N

i0
. (A.1)

Then we solve the KM with N -particles:

dθε,Ni
dt

= Ωε,Ni −
K

N

N∑
j=1

sin(θε,Ni − θε,Nj ),
dΩε,Ni
dt

= 0, t > 0, i = 1, · · · , N,

(A.2)
with initial data:

(θε,Ni (0), Ωε,Ni (0)) = (θε,Ni0 , Ωε,Ni0 ).

With solutions (θε,Ni (t), Ωε,Ni (t)) of (A.2), the approximate solution µ̃ε,Nt for the
measure valued solution can be constructed as a sum of Dirac measures, i.e.,

µ̃ε,Nt :=
1

N

N∑
i=1

δθε,Ni (t) ⊗ δΩε,N
i (t).
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Then, µ̃ε,Nt is clearly a measure valued solution to KKE (1.1). As consequences of
Proposition 3.1, the KKE (1.1) has a unique measure valued solutions µt and µ̃εt
with initial data µ0 and µ̃ε0, respectively. Furthermore, the measure valued solutions
satisfy the stability estimates:

d(µ̃εt , µ̃
ε,N
t ) ≤ C d(µ̃ε0, µ̃

ε,N
0 ) and d(µ̃εt , µt) ≤ C d(µ̃ε0, µ0).

This obviously yields

d(µ̃ε,Nt , µt) ≤ d(µ̃ε,Nt , µ̃εt ) + d(µt, µ̃
ε
t )

≤ C
(
d(µ̃ε,N0 , µ̃ε0) + d(µ0, µ̃

ε
0)
)
.

For any δ > 0, we first choose a sufficiently small ε such that d(µ0, µ̃ε0) < δ
2C

. Then

we next choose N = N(ε) large enough so that d(µ̃ε,N0 , µ̃ε0) < δ
2C

. Hence we have

d(µ̃ε,Nt , µt) < δ,

and this completes the proof by selecting our desired approximations µNt = µ̃ε,Nt .

Acknowledgements JAC was partially supported by the project MTM2011-
27739-C04-02 DGI (Spain) and 2009-SGR-345 from AGAUR-Generalitat de Catalunya.
JAC acknowledges support from the Royal Society by a Wolfson Research Merit
Award. YPC was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea funded by the Ministry of Education, Sci-
ence and Technology (ref. 2012R1A6A3A03039496). JAC and YPC were supported
by Engineering and Physical Sciences Research Council grants with references
EP/K008404/1 (individual grant) and EP/I019111/1 (platform grant). The work
of SYHA is supported by NRF grant (2011-0015388).

References
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6. Cañizo, J. A., Carrillo, J. A. and Rosado, J., A well-posedness theory in measures
for some kinetic models of collective motion, Math. Models Meth. in Applied
Sciences, 21, 515-539 (2011).

7. Carrillo, J. A., Fornasier, M., Rosado, J. and Toscani, G., Asymptotic flocking
dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42, 218-236
(2010).

8. Carrillo, J. A. and Toscani, G., Wasserstein metric and large-time asymptotics
of nonlinear diffusion equations in New trends in mathematical physics, World
Sci. Publ., Hackensack, NJ, 234-244 (2004).

9. Chiba, H., Continuous limit of the moments system for the globally coupled
phase oscillators, Submitted (2010).

10. Choi, Y.-P., Ha, S.-Y., Jung, S. and Kim, Y., Asymptotic formation and orbital
stability of phase-locked states for the Kuramoto model, Physica D, 241, 735-754
(2012).



23

11. Choi, Y.-P., Ha, S.-Y., Kang, M.-M. and Kang, M, Remarks on the synchro-
nization of Kuramoto oscillators, Comm. Math. Sci., 11, 385-401 (2013).

12. Chopra, N. and Spong, M. W., On exponential synchronization of Kuramoto
oscillators, IEEE Trans. Automatic Control, 54, 353-357 (2009).

13. Crawford, J. D. and Davies, K. T. R., Synchronization of globally coupled
phase oscillators: singularities and scaling for general couplings, Physica D, 125,
1-46 (1999).

14. Ha, S.-Y., Ha, T. Y. and Kim, J.-H., On the complete synchronization for the
globally coupled Kuramoto model, Physica D, 239, 1692-1700 (2010).

15. Ha, S.-Y. and Kang, M., Emergence of bi-cluster configurations from the en-
semble of Kuramoto oscillators, Quart. Appl. Math., 71, 707-728 (2013).

16. Ha, S.-Y. and Liu, J.-G., A simple proof of Cucker-Smale flocking dynamics
and mean field limit, Commun. Math. Sci., 7, 297-325 (2009).

17. Ha, S.-Y. and Slemrod, M., A fast-slow dynamical systems theory for the Ku-
ramoto type phase model, J. Differential Equations, 251, 2685-2695 (2011).

18. Jadbabaie, A., Motee, N. and Barahona M., On the stability of the Kuramoto
model of coupled nonlinear oscillators, Proceeding of the American Control Con-
ference, 4296-4301 (2004).

19. Kuramoto, Y., Chemical Oscillations, waves and turbulence, Springer-Verlag,
Berlin. (1984).

20. Kuramoto, Y., International symposium on mathematical problems in mathe-
matical physics, Lecture notes in theoretical physics, 30, 420 (1975).

21. Lancellotti, C., On the Vlasov limit for systems of nonlinearly coupled oscilla-
tors without noise, Transport theory and statistical physics, 34, 523-535 (2005).

22. Li, H. and Toscani, G., Long-time asymptotics of kinetic models of granular
flows, Arch. Ration. Mech. Anal., 172, 407-428 (2004).

23. Mirollo, R. and Strogatz, S. H., The spectrum of the partially locked state for
the Kuramoto model, J. Non. Sci., 17, 309-347 (2007)

24. Mirollo, R. and Strogatz, S. H., Stability of incoherence in a population of
coupled oscillators, J. Stat. Phys., 63, 613-635 (1991).

25. Neunzert, H., An introduction to the nonlinear Boltzmann-Vlasov equation.
In kinetic theories and the Boltzmann equation, Lecture Notes in Mathematics
1048, Springer, Berlin, Heidelberg (1984)

26. Raviart, P.-A., An analysis of particle methods. Numerical methods in fluid
dynamics, (Como, 1983), 243-324, Lecture Notes in Math., 1127, Springer, Berlin
(1985).

27. Pikovsky, A., Rosenblum, M. and Kurths, J., Synchrnization: A universal con-
cept in nonlinear sciences, Cambridge University Press, Cambridge (2001).

28. Spohn, H., Large scale dynamics of interacting particles, Texts and Monographs
in Physics, Springer (1991).

29. Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchro-
nization in populations of coupled oscillators, Physica D, 143, 1 (2000).

30. Villani, C., Topics in optimal transportation, Graduate Studies in Math., 58,
AMS (2003).

31. Winfree, A. T., Biological rhythms and the behavior of populations of coupled
oscillators, J. Theor. Biol., 16, 15-42 (1967).


