Exponential Convergence Towards Stationary States
for the 1D Porous Medium Equation
with Fractional Pressure
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Abstract

We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of
the porous medium equation introduced by Caffarelli and Vézquez [13, 14], where the pressure is
obtained as a Riesz potential associated to the density. We take advantage of the displacement
convexity of the Riesz potential in one dimension to show a functional inequality involving the
entropy, entropy dissipation, and the Euclidean transport distance. An argument by approxi-
mation shows that this functional inequality is enough to deduce the exponential convergence
of solutions in self-similar variables to the unique steady states.
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1 Introduction

In this work, we analyse the long-time asymptotics of the nonlinear nonlocal equation
pr =V - (p(V(=A)"*p+ \z)), A>0, zeR, (1.1)

obtained from the fractional version of the porous medium equation introduced by Caffarelli and
Vazquez [13, 14]

ur =V - (uVp), p=(-A)"%u, (1.2)
by passing to self-similar variables. Indeed, by adding the Fokker-Planck confining term V - (zu),

solutions to (1.1) will characterize the long-time asymptotic behaviour of solutions to (1.2). This
connection will be further explained below.
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The fractional porous medium equation (1.2) can be viewed as a continuity equation, u, +
V- (uV) = 0, for a density or concentration u(7,y) with velocity V. = —Vp, where the velocity
potential or pressure p is related to u by the inverse of a fractional Laplacian operator p = (—A)~*u,
0 < s < 1. The standard porous medium equation is recovered for s = 0. We assume that the
unknown u(7,y), representing a density or concentration, is defined for y € R? and 7 > 0 and
supply initial data u(y,0) = ug(y), a nonnegative mass distribution in L'(R?) N L>(RY). We also
point out that the pressure can be represented as

p=(—A)"°u=K=xu,
with the singular convolution kernel

$272T(d/2 — s)
72T (1 +s)

K(y) = Cd,s|y|2s_d7 Cd,s = (1'3)
and 0 < s < min(1,d/2), called the Riesz potential of u as in the standard textbooks [27,
37]. This representation also makes sense for s = d/2 with the logarithm kernel K(y) =
—21=dr=4/21(d/2) " log |y| (see [15, 28] in one dimension) and for 1/2 < s < 1 in one dimen-
sion with the negative coefficient ¢; s and the positive exponent 2s — 1 in K(y). As a result, the
kernel K(y) does not necessarily decay to zero at infinity in the last two cases, but the magni-
tude of the gradient VK (y) does. When the kernel K(y) is replaced by a less singular radially
symmetric function, the same equation appeared in granular flow [6, 39, 29, 17] and biological
swarming [32, 8, 7].

To describe the long time behaviour of solutions to (1.2), it is more convenient to study the
corresponding transformed equation (1.1) as discussed in [20, 14], by defining

p(t,z) := (1 +7)%(T,y), (1.4)

with the similarity variables = y(1 +7)7% and ¢ = log(1 + 7). The exponents a and 3 can be
determined from dimensional analysis and the mass conservation [5], which are given by

a=d/(d+2—-2s), B=1/(d+2—2s). (1.5)

In this way, the rescaled density p(t,z) satisfies (1.1) with A = 8 = 1/(d + 2 — 2s). We will keep
A > 0 arbitrary in (1.1) as a parameter to characterize the convexity of the energy defined below
and the convergence rate to the steady state later on. As a result, the long time behaviour of the
original density u(7,y) is completely specified if we establish the convergence of p(¢, z) to the steady
state poo(x) of (1.1) with A = 5.

The existence and uniqueness of the steady state po, of (1.1) for each given mass was initially
characterized by an obstacle problem in [14], and then the explicit expression of p, was obtained
by Biler, Imbert and Karch [9, 10], for even more general nonlinear dependence of the pressure
p=(=A)"u™"! m > 1. In case m = 2 of our interest here, the self-similar solution of (1.2) is
given by

u(7_7 y) _ (1 + T)—d/(d+2—2s)poo (y(l + 7_)—1/(d-&-2—2s))7

with the self-similar profile )
poo(®) = Kas(R* — |z*)

and the prefactor

P 225710(d/2 + 1)
b T PR = s)(d/2+1—s)
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The radius of the support R is determined by the total conserved mass M, that is,

2257rd/2F(d/2 + 1A Ri+2-2s
d+2—29)(d/2+1—s)? '

M = u(T,y)dy = ( (1.6)

R4
After these preliminary discussion, we concentrate on the convergence of p(t, x) to the steady state
Poo() in the rest of the paper.

Let us point out that the fractional porous medium equation (1.1) can be viewed as a particular
case of the aggregation equation [17, 8, 4] written as

pr =V (p(VKxp+VV)), zeR?, (1.7)

where V(z) = %|x\2 and K(z) = cqqz/* %, 0< s < 1.

During the past fifteen years, several important techniques [34, 20, 23, 17, 40, 1] have been
developed for the convergence of linear or nonlinear Fokker-Planck equations to their steady states
with sharp rate. These techniques can also be employed to prove the convergence of solutions
of (1.1) to peo, by realizing that the free energy £(p) defined as

&0 = 5 [ A=A "0la) + Nl }o(e) do (18)

2
= Cd’s/ / 7/)(1:)[)(%) dydx—i—A/ ﬂp(a:) dz,
2 Jra Jpa |z —y|im2 Rd 2

is a Lyapunov functional for 0 < s < min(1,d/2). One can similarly define the Lyapunov functional
for 1/2 < s < 1 in one dimension, assuming that p satisfies a growth condition at infinity, namely
plog|z| € LY(R) if s = 1/2 and p|z|>*~1 € LY(R) if 1/2 < s < 1. In fact, (1.1) is a gradient flow
of the free energy functional (1.8) with respect to the Euclidean transport distance in the metric
space of probability measures [1, 18].

The basic properties of the energy £(p) and its dissipation Z(p) defined below, together with
the long-time asymptotics of solutions to (1.1), are already derived in [14]. More precisely, along
the evolution governed by (1.1), one can obtain the formal relation d€(p)/dt = —Z(p), where we
denote by Z(p) the entropy production or entropy dissipation of £ given by

. o€ oA
Tlp) = [ pIVePdr, with €= = (=8)*p+ el
Rd p 2

Using this relation, the solution of (1.1) is shown to converge towards po in [14], but no rate is
obtained. To be more precise, they show that solutions of the fractional porous medium equa-
tion (1.1) satisfy the energy inequality €(p(t,-)) + fJI(p(T, ))dr < E(p(0,-)) that is enough to
conclude the converge of p(t,z) to the steady state poo ().

In this work, we will focus on obtaining the sharp convergence rate for the solutions of the
Cauchy problem for (1.1) towards the equilibrium p, for all 0 < s < 1 in one dimension, although
many of the calculations are presented in general dimensions. In the particular case of s = 1/2
in one dimension, the kernel is given by the logarithmic potential and it was treated in [15], see
also [28] for related functional inequalities. In fact, it is shown in [15] that the energy £(p) is
displacement convex, which can not be derived directly from the criteria given in the seminal paper
by McCann [31]. We will take advantage of these techniques in [15] to prove certain functional
inequalities, in particular the HWI inequalities as introduced in [35] (also obtained in [28] for the



logarithmic case s = 1/2). This displacement convexity and related inequalities are then used to
show the convergence towards equilibrium in one dimension, through the exponential decay of the
transport distances and the relative energy, for general s € (0,1).

Finally, we point out that the problem of sharp convergence rates in several space dimensions is
still open. Moreover, it could be interesting to prove or disprove analogous functional inequalities
involving nonlocal operators in several space dimensions corresponding to the ones established here
in one dimension; see more comments at the end of Section 2. New techniques or inequalities have
to be developed. Showing asymptotic convergence when the confining term V - (Azp) is replace by
the general drift V - (pVV) is another interesting problem, see [22, 17].

The organization of this work is as follows. We first remind the reader in Section 2 about the
basics of the entropy/entropy dissipation method, together with the main functional inequality
that we will prove in one dimension. In fact, we follow closely the strategy developed for nonlinear
diffusion equations in [3, 2, 20, 23, 16, 17] to reduce to the proof of a Log-Sobolev type inequality.
This inequality is then proved in Section 3 as a consequence of the HWI inequality which crucially
uses the displacement convexity. Finally, Section 4 is devoted to obtain the rate of convergence
towards equilibrium of the solutions to (1.1) by an approximation method using the construction
of solutions in [13].

2 'Transport inequalities in dimension 1

In this section, we derive several inequalities originated from optimal transportation theory that
will be used in the next section to show the exponential convergence of the relative entropy in one
dimension.

Before starting the technical computations we are going to use to prove the transport inequali-
ties, let us discuss a bit more on the equilibrium solution ps. It was recently proved in [22, Theorem
1.2] that & restricted to P(RY) is strictly convex in the classic sense for 0 < s < min(1,d/2), and it
has a unique compactly supported minimizer po, characterized by

2

(=A) " pos(z) + )\|562| =Cy, Vaesupp(pso) (2.1a)
2

(=A) " poc(@) + A’g;‘ >C., ae R, (2.1b)

for some constant C, determined by the total mass. This formulation is equivalent to the obstacle
problem in [14], for the rescaled pressure P = (—A)~®p and the quadratic obstacle ®(z) = C, —
%|x\2 Using the following relation (see [9, 10])

“2T(2—s -5 —2s
(~8) (1~ ae = ZTEE DR (o A2

A d 2 2
< .
= | < R || > , forall || <R, (2.2)

it is easy to verify that pe = Kg¢(R?—|x|?)1"* is indeed the minimizer for £ for 0 < s < min(1,d/2).
Similar computations can be done in the range 1/2 < s < 1, see [15, 4] for instance.

Now, we can consider the difference £(plps) := E(p) — E(pxo) as a measure of convergence
towards equilibrium.



We know from section 1 that the following relation holds for sufficiently smooth solutions p
to (1.1)

() ~ Elpre)) = ~T(p).

Hence, once we have the following inequality for a sufficiently large class of functions

E(p) = €(poc) < 57 Z(p); (2.3)

we can prove the exponential convergence of £(p) — £(pso) to zero with exponential rate —2\ (but
not necessarily the exponential convergence of Z(p)), by integrating

9 (E(0) ~ Epn)) = ~T(p) < ~2A(E() ~ Elpc)

in time. The inequality (2.3) is usually called, in the context of optimal transport, Log-Sobolev
inequality in the linear diffusion case or generalized Log-Sobolev inequalities otherwise. We will
revisit (2.3) in the next section by investigating the displacement convexity of the energy &(p).
In particular, it becomes the logarithmic Sobolev inequality [26] for linear Fokker-Planck equa-
tion [2, 19, 38], and a special family of Gagliardo-Nirenberg inequalities for nonlinear Fokker-Planck
equations with porous medium type diffusion [23, 20, 16].

Thus for the rest of this section, we shall prove a generalization of (2.3) and use it in the
following section to obtain the desired decay for £(p) — €(poo)-

Besides £(p) and Z(p) introduced earlier, we also need the following versions of the energy and
energy dissipation of a measure p € Py 4c(R):

E.(p) = E(p) + ¢ /R plogp.

T (p) := /R |02 (—022) " *p(x) + Az + 0, log p(ac)‘2 dp(x),

which are associated to the regularized equation (3.2) in the next section. Throughout the rest of
the paper we shall commit an abuse of notation and identify every absolutely continuous measure
with its density. So we shall write dp(z) and p(z)dz meaning the same thing.

We use optimal transport techniques to prove the Log-Sobolev, the Talagrand, and the HWI
inequalities for the energy & for smooth probability measures p € P2 4.(R). We shall focus on the
so called HWI inequality that generalizes certain elementary inequalities for convex functions on
R with Euclidean distance replaced by the Wasserstein distance on Py(R) (the space of probability
measures with finite second moment). The Wasserstein distance on Po(R) is defined for any p1, p2 €
P2(R) by

1

2

Walpropn)i= (ot [ e yParten)
RxR

m€ll(p1,p2)

where II(p1, p2) be the set of all nonnegative Radon measures on R x R with marginals (projec-
tions) p1 and pa. The HWI inequality is called so because it was first established in [35] for the
relative Kullback information (denoted by H ), the Wasserstein distance W5 and the relative Fisher
information (also denoted by I).

Before stating the main results, let us briefly review the following facts about the Wasserstein
distance and the weak convergence in Py(R) that shall be used in the proofs.



i) We say that the a sequence (pn)neny € P2(R) weakly converges to p € P(R) (denoted as
pn = p), if
tin [ o(a) dpa(s) = [ @) dp(a)

n—0o0

for all ¢ € Cp(R), the space of bounded and continuous functions.

ii) The pair (P2(R), W3) is a complete metric space and the convergence under the distance Wo
is stronger than the convergence in the weak sense. In fact, the following three facts are
equivalent for any (pn)nen C P2(R) and p € P(R):

o Wa(pp,p) — 0 as n — +o0;

e p, — pand

lim [ 22 dpp(z) = /332 dp(z); (2.4)
n—oo
e p, — pand

lim lim sup/ z% dp,(z) = 0.

iii) Given pi, p2 € P2(R) with p; absolutely continuous with respect to the Lebesgue measure,
there exists a Borel map 0 : R — R such that 0#p; = po, i.e.,

/ o(x) dpa(z) = / ©(0(x)) dp1(z), for every bounded Borel function ¢,
R R

2(p1, p2) (/ | = 0(x)* dp1 (x ))é :

It is well known that the optimal map 6 is nondecreasing on R and increasing on supp(p;). In
fact, § can be written in terms of the cumulative distribution functions F; and Fy of p; and
p2 respectively, that is 8(z) = F, ' o Fy(z), see [40, Chap 2].

and 6 also satisfies

For a detailed proof of the above results and generalizations, the reader may check the standard
references [1] and [40]. Now, let us begin with the following technical lemma about the derivative
of the Riesz potential.

Lemma 2.1. Let 0 < s < 1 and p € L'(R) N L®(R) N C*(R) with o > max(1 — 2s,0). Then
(—=A)~%p € C(R) and for any = € R,

0u(=0r) (@) = —era(1=29) | e (o) = @) dy . i 5 € (0.1/2)

or

0u(=0r) (@) = —era(1=29) | gl dy i s € (1721

Proof. Firstly, let us assume that s € (0,1/2). To simplify the notation, we write ks(z) :=
ci, s|z[?*~1. Hence, we note that under the hypothesis on p, we have that

(z —y)

|z —y[>>

(o) 1= —e(1-29) | (o) — (@) dy = K, * (0 — p(z)



is well defined for all z € R.

Now, let n € C*(R) be a radial function such that 0 < 7 < 1, n(z) = 0 if |z| < 1, n(z) = 1 if
|z| > 2 and || < 2. Define n.(z) := n(e~'z) and

p(a) := (=0a) °p(x) = ks * p(z)
pe(w) == (ksne) * p(z)

Since p is bounded, we have that p — p. uniformly on R as

@) —pe@l < [ ko= 91— 0l - 0)oly) dy

1
Sl [ gy dy =l
= i< lylt=% >~

for all x € R, where C depends on s.

By the smoothness of ksn. we know that p. € C! and p.(z) = (kasn:) * p(x), and since kg1 is
radial, we can write

i) = [ (ko) o = 9) (o) = pta)) dy.

Therefore,

us(2) = pl(x)] =

/lzy|<zs(k8(1 — 7)) (z ~ ) (P(y) - p(fv)) dy

< /Iz—y|<2e (!kg(ﬂf =YL = ne(x = y)| + ks(z — y)Ini(z — y)|> ‘p(y) _ p(x)‘ dy

cs(1—2s) 2 e
s /|x—y|<25 ( |z — y|272 e |z — y|1—23) "O(y) B p(x)) dy (2.5)

1 1 1
<c 1 ]
lr—y|<2e <‘.TJ - y‘2—28—a + £ ‘:L' — y‘l—QS—a> Y

< Cl €a+2571 ,

where the constant C; only depends on s, o and on the Hélder constant of p. Thus, we also have
that p. converges uniformly to us as € — 0, and therefore p’ = us.

Now, if s € (1/2,1] , we only need to adapt the argument in formula (2.5) for the function

r—y ’
(@) = —c1s(1—25) | —2—Y_p(y) dy =k
i) = —en(1=29) | ) dy = K

and using that p. = (ksne)’ * p in the following way

1 1 1
/
us(z) — p.(x :C P / ( — + - — >dy
)o@ =Cllol [ (s iy

— 02528_1,

where the constant Cy only depends on s and on the L* norm of p.
Finally, if s = 1/2 we have that

1

(=02) "2 p(x) = ¢y 1 /Rlog [z —ylp(y) dy
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and

u

() = —¢p 1 =~ v) (p(y) - p(ﬂﬁ)) dy.

2 Jg |z —yl?

Arguing as above for k1 (z) := ¢, 1 log|z| we arrive at the following estimates:
2 ’2

1
2

Ip(a) — pe(2)] < llolloo / |og [yl[dy = Cllp]lce (| log 22| + 1)

lyl<2e
and
1 1
/

ui(z) —pe(z)| <C ( + —|loglz —y )’py—px‘dy

us () — p:(2)| e ] E\ | ) |p(y) — pl)
1 1 N

<c (o—ri=s + =l =yl 10g |z — yl] ) dy
|lx—y|<2e |‘T_y| €

< Cea(l +5+e’10g25]).

Therefore, since all these estimates are uniform in z, we conclude that the lemma is true for all
s € (0,1]. O

1

Remark 2.2. With this expression for the derivative of (—0.,) °p for s < 3, we obtain the

following equality that shall be used in the next proposition:

Oz (—0pz) °p(z) .. T —y
s 1) o /xWT w—yP (p(y) - p(w)) dy

: r—y . -y
= lim Wﬂ(y) dy — lim ,o(x)/| W dy

r—0 |lz—y|=r |$ - z—y|>r |$ -

. r—y
= lim Wﬂ(y) dy,

r—0 ‘I7y|27' |{,U -

where we only used the fact that ks is radial and k. is integrable at the infinity. For s > %, the
expression is valid without taking the limit, as the kernel is locally integrable.

The next proposition shows that the HWI inequality holds for £ and &, at least for a class
of bounded and Hoélder continuous functions on R. The proof follows the arguments given in [28]
where the same inequality is proved for the case of the logarithmic interaction and strongly relies on
the fact that the optimal transport map w.r.t the Wasserstein distance is a monotone nondecreasing
function on R. We point out that the convexity of the confinement due to the drift measured by
A > 0 appears explicitly in the inequalities as in [17].

Theorem 2.3. Let s € (0,1], A € R, p € LYR) N L®(R) N C%R) nonnegative where a >
max(1 — 25,0) and with [ p=1, and pes the minimum point of € on P*(R). Then

£(p) — E(pne) < VI Walp, ) — 5 W3 (0. ).

Proof. For s = 1/2 this result was proven at [28]. So, let us suppose that s € (0,1/2) and, to
simplify, let us denote Kp(z) = 0,(—0zz) *p(x). Since p is absolutely continuous with respect to
the Lebesgue measure, there exists an nondecreasing transport map 6 such that 0#p = pso.



Then, let us write

VI(p)Wa(p, poc) — ng(pv Poc) = E(P) +E(poo) =T1 + T2 + T3

1= ([ [fota) + Axfdpu))l/z (fre- 9<x>|2dp<x>)l/2

_ / (Ko@) +22) (z = 0(2)) dp(a)

where

T :—/{A:I:(:L‘—Q(x)) ;\xQ—i— A9( 2 —%—9(:6)12}@(36)
c dp(z)d Cls
Ty = - p(_) p()zlll)_% 12 \:c— ’1 25 /K z) = z)dp(x),

where we added and subtracted several terms. This allows us to show that 77 > 0 by the Cauchy-
Schwarz inequality and Ty = 0 for all A € R. Now, for T3 let us call ks(z) = c1 5|z|?*~!. Then, by
the Remark 2.2

Kp(z) = lim ks(z — y)dp(y)

=0 Sy —a|>r

And, since k.(z) = —kl(—x), we can write

Furthermore,

dp(z)dp(y) _ .
o —gi% lim /| o ks(x — y)dp(x)dp(y)

dp(z)dply)  _ . o )
1’5/ 0(x) — 0(y)['—2 _lﬂo/y—wr ks(0(z) = 0(y))dp(x)dp(y)

and then,

Ty = tim o [ {ka(0) — 60)) — hulw — ) — K, (6(2) — 00)) (0(x) — 6(s) — 7 + ) bp(w)dn()

r—0

The integrand is nonnegative by the convexity of ks on the positive real line and by the monotonicity
of 8, so T3 > 0 as well.

If s € (1/2,1], we still have ks(z) = ¢ 5|z[**7! convex because c; s is negative in this range.
Thus, the previous computations still apply. ]

Remarks. 1) It is known that, if the HWI inequality holds for some A > 0, then the Log-Sobolev
inequality also holds One Just needs to maximize the right-hand side for W5 > 0 or use the Young’s
inequality for (A72 2T )()\2 W3). Then we have that

1

€(p) = E(ps) < 57 Z(p), (2.6)



for all p satisfying the assumptions of the theorem above.

2) Note that in the proof of the Theorem 2.3 we did not use the fact that po is the minimum
of £, only the fact that £(ps) < 00. In fact, the same inequality holds for any pg in the place
of poo, and also with po in the place of p, since poo is absolutely continuous with respect to the
Lebesgue measure, which allows the existence of the map € by the item (iii) from page 6. Therefore,
if we exchange p and ps in the HWI we obtain the fractional version of the so called Talagrand
inequality or transportation cost inequality

Wa(p, poc) < J % GOES)E (2.7)

We can derive similar results for the ¢ problems.

Proposition 2.4. Let s € (0,1], A >0, 0 < e < \/27m, p € L}(R) N L®(R) N C*(R) nonnegative
where o > 1 — 2s and with [ p =1, and pS, the minimum point of & on Pa(R). Then

£.(0) ~ £:(05%) < VIDIWalp,p5) — W3 (0. )

Proof. The proof is basically the same, but since we have a new term inside the respective diffusion,
we shall include it for completeness.

As in the previous theorem, let Kp(z) = 0,(—0z) *p(x) and 6 be such that 0#p = pS . Then,
we decompose the inequality as

A
VI(p)Wa(p, ) — §Wz2(p, po) —E(p) + E(p5) =T + To + T

e </ ’Kp(x) + AT+ €0, 10gp(x)‘2dp(w)>l/2 (/ & — 9<$)’2dp($)>1/2

_ / (Kp(;p) + Az + €0, log p(x)) (x —0(x)) dp(x)

where

Ty = —/ <€8¢C log p(x) + Am) (O(x) —x) dp — / (%mQ + elog p) dp

)‘ 2 £ & )‘ 2
+ / (§x + elogpoo) dps, — 5 / & — 0(z) Pdp(z)

dp Cl,s
’1 25 9 ,x_ ’1 23 /K x) — x)dp(z)

By the same arguments, we conclude that 717,73 > 0. Now, for T, let us define the following

1(flg) = [ f(a)1og <£E;ﬁ§> ix

for all nonnegative f,g € L'(R) with g > 0. Then we can re-write T, in the following way
72 =< (= [ anton (22 ) (01) ~ 2) dp(o) — Hlple™™) + H2ele™™) 7 [ Io0) ~ o d )
2 A A A
+ <1 — ;\TE> / {—)\x(ﬂ(m) —x)— 51’2 + 50(3:)2 + 5(9(3:) — .CC)Q} dp(x).

T3 .=

functional

10



Note that the second line is equal to (A—2me) [ |6(x)—=z|? dz, which is nonnegative for e < \/27.
For the first line, we can use the proof of the HWI inequality made in [35]. Actually, Otto and
Villani showed that whenever p, p5, € C°(R)NP(R) and V € C%(R) is such that [e~Vdz =1 and
V" > K for some constant K € R, then

Hle™) = Hple™) = [ 00108 Ll 000) ~ 2)pte) ao = [100) o0t o > 0.

and for the density argument given in the proof of the Theorem 9.17 of [40], we have that this
inequality holds for all p,pS, € L'(R) N P2(R). So, applying this for V(z) = m2? we have that
K = 27 and we conclude that Ty > 0. O

Remark 2.5. By the same arguments given for (2.6) and (2.7), we conclude that the follow-
ing Log-Sobolev and Talagrand inequalities hold for £, as long as p satisfies the assumptions of
proposition 2.4:

1

Ee(p) = &(p5e) < 5 Z<(p), (2.8)

Walo. i) < 2 (E:0) - Ex(2).

Remark 2.6. These results also work for a general confinement potential V : R — R instead of

the quadratic one %xQ, as long as 'V — %:ﬂ 1S COnver.

Finally, let us prove the following lemma that shall be used in the last section for the convergence
in entropy of the solutions of the approximate problems. The proof uses similar arguments given
in the Theorem 1.4 of [36]. Let us just remind that a sequence {py, }neny € P(R) is said to converge
in the weak-* sense to p € P(R), p, — p if

lim [ ¢(z)dp,(x) = /Rgo(x)dp(m) , for all ¢ € Cp(R)

n—o0 R

where Cy(R) is the space of continuous functions on R that goes to zero at infinity. It is clear that
convergence in Wy implies weak convergence and weak convergence implies weak-* convergence.

Lemma 2.7. The entropy E. is weak-* lower semi-continuous for all € > 0.
Proof. We know from [31] that the functional

p— /plogp

is weak-* lower semi-continuous, so we just need to show the result for £. For this, let us write it
in the following way:

&) = [ Flasdpla)dn(y).

where \ )
2 4 Cl,s .
— _— f
Plag) =4 17 TV Ty e Ey
+o00 , ifz=y
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Since F is non-negative and smooth outside the diagonal x = y, we can find a sequence
{F ey C Co(R?) such that Fi(x,y) / F(z,y) for all (z,y) € R2. Therefore, by the mono-
tone convergence theorem and the fact that p, x pp, — p x p if p, — p, we have that

E(p) = / F(z,y) dp(z)dp(y) = lim / Fy(z,y) dp(z)dp(y)

= lim lim [ Fy(z,y) dpn(2)dpa(y) < lim / F(z,y) dpn(z)dpn(y)

k—o0 n—00

= liminf £(py,)

3 Exponential Convergence

In this section we shall prove that the energy of the solution decays exponentially fast for the
regularized equation with mollified initial data, and then passing the limit on these regularizing
parameters.

Theorem 3.1. Let pg € L*(R) N L>(R) such that
0< pO(x) < Ae—a|x\ )

for some constants a, A > 0. Then, for each 0 < s < 1/2, the solution p(t,-) of (1.1) with initial
data po satisfies

E(p(t) = E(p) < e (E(p0) — Elp) ).
Proof. In order to use the results of Section 2, firstly we shall assume that
po € C°(R) and / po(x) dx = 1. (3.1)
R

Let poo, p5, € P(R) be the minimizers for £ and & respectively. By the assumption on py we know
from the proofs of Theorems 4.1 and 4.2 in [13] that the solutions p and p to

{ Oyp = 0y(pOu(—Buz) *p+ Axzp) , in R x (0,00) (3.2)
p(0) = po , in R, :
and
{ 01p° = 02 ("0 (—0uz) 5% + Axp°) + €0pzp® , in R x (0,00) (3.3)
p°(0) = po , in R '

satisfy p € C([0,00); L'(R)) and p° € C1((0,00) x R) for all € > 0 sufficiently small. Because of
the regularization in (3.3), for fixed time ¢ > 0, p(¢,.) is in fact in C?(R). Moreover, there exist
C(t),a(t) > 0, such that

0< p(t,x), p°(t,z) < C(t)e 2@l (3.4)

Since p°(t) is smooth, we can apply the Log-Sobolev Inequality (2.8) for £ and obtain that for

all ¢t > 0, .
E(p°(t)) — E(pS) < ﬁIe(pE(t))-

12



Making use of the fact that

CE(F (D) = L5 (1),

we conclude that

E(p°(1) = Ex(p50) < e (Exlpo) - E:(s%) ). (3.5)

To take the limits as ¢ — 07, let us analyze each term on both sides of (3.5) separately:

i)

ii)

The easiest one is the limit & (po), since lim+ E-(po) = E(po) holds as long as E-(py) < oo for
e—0

some ¢ > (0, which is true by the assumptions on pg.

For the term &.(pS,), let us first define the following auxiliary functional on Py 4.(R):
H(p) == H(ple™™ —W/xp+/m%p

. - .
Since [e ™ dx =1, we can write

Hie) = / e—TT? log ( pz ) e do = / [e—fr:ﬁ log (e—frﬂ) B e_i)rgﬂ +1| e da,

which is nonnegative by Jensen’s inequality.

Let us prove that limsup,_,o & (p5,) < €(poo). Using the fact that p is the minimum for &,
we obtain the following inequality

Eo(p5) < Exlpoo) = E(poc) + / Po0 108 oo (3.6)

By the characterization of the minimum po in [14, 22], we know that ps, € P2.(R) N L (R),
and hence the second term on the right hand side of (3.6) is finite. Thus, we can take the
limit & — 0 and obtain that limsup,_,g+ £-(p5,) < E(Poo)-

For the opposite inequality liminf, o+ & (pS,) = E(peo), We can use the fact that p is the
minimum for £ and write

Epoo) < E(pEe) = Ec(p5) — eH(ps) +em / e (3.7)

<eh) +em [ ah (3.8)

So, it is sufficient to prove that the second moments of pZ are uniformly bounded for ¢ > 0
sufficiently small. For this, note that

A 1—em)A

o (—emn /W 1 /dpzomdpiou it

o=y

/
Do

_ E(5) < Elp) < e<poo>+' / poologpoo\
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for all 0 < & < 1/27. Therefore, by (3.7) and (3.8)

E(pso) < liminf & (pS,) + lim 577/:r2p§0 = liminf & (pS,).
e—0t e—0t

e—0t

Hence, as € goes to zero from above, we have that the minimum of &£.(p) indeed converge to
the minimum of &(p), i.e., E(poo) = lim+ E(pS)-
e—0

iii) Finally, let us prove that £(p(t)) < liminf, o+ E(p°(t)), as a consequence of the convergence

of p*(t) to p(t) in Pz ec(R) and the lower semi-continuity of the energy &.. For this we can
use the bound (3.4) to obtain

lim sup/ pe(t,x)dx < lim C(t)/ e Wizl gy = 0,
R—o0 >0 |z|>R R—o0 |z|>R

which means that p°(t) is a tight family of probability measures and by Prokhorov Theorem,
there exist a sequence €, — 07 such that p* (t) — p(t), i.e.,

[ et do s [ plapta)ds . Ve e CuR) (39)
R R
Moreover, due to uniform exponential bound, we also have that
lim sup / 22p* (t, x)dz < lim C(t)/ z2e Oy — 0. (3.10)
R—o0 ¢, 50 |z|>R R—o00 lz|>R

Therefore, by item (iii) of (2.4) we have that (3.9) and (3.10) imply that p*(¢) converges to
p(t) in (P2(R), Wa). Now, for the following inequality

E(p7 (1)) = Ean (9 (1)) — enM(p™ () + 7 / 207 (1, 2) < £ (F7) + e / g (1, ),

and by the fact that £ is lower semi-continuous in (P2(R), W3) and the second moments of
p°"(t) are uniformly bounded w.r.t n, we obtain

E(p(t)) < liminf E(p™ (t)) < liminf &, (o™ (¢)).

n—oo n—o0

Putting all the limits as € goes to zero together, we can conclude the exponential convergence of
g<p(t)) - g(poo)a that iS7

E(pl1)) — E(poe) < liminf &, (577 (1)) — lim £, (p%2)

= timinf (£, (57 (1)) — £, (552) )

n—oo

< e Piminf (£, (o) - £, (%))

n—0o0

=2 (E(p) ~ Ep)).

If the regularity assumption in (3.1) is not true, we can proceed the above argument with the
mollified initial data pg s = 75%po, which has the same bound and mass as pg. Since we still have the
same exponential bounds for the respective solutions ps(t), we can argue as above and conclude that
E(p(t)) < liminfs_0E&(ps(t)) holds for all ¢ > 0. For t = 0 we can use the exponential bound of the
initial data and the Dominated Convergence Theorem to conclude that lims_,o E(p50) = E(po). O
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As a direct consequence of the Talagrand inequality in (2.7), we also obtain the exponential
decay in Wasserstein distance.

Corollary 3.2. Assume that py satisfies 0 < po(z) < Ae=| for all z € R and some a, A > 0.
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data po satisfies

Walolt), o) < €/ 2 (E(0) — Elpc))

For the Fokker-Planck equation or the classic Porous Medium Equations, exponential conver-
gence of the relative entropy £(p) — € (pso) implies convergence of p to the steady states po, in some
classical LP norms, using for this the classical Csiszér-Kullback-Pinsker inequality as in [2, 16].
Here we can show that the convergence in the relative entropy implies the convergence of the norm

1(=822) "2 (p = poo) -

Lemma 3.3. Let ps be the unique minimizer of £, then for any p € P2(R),
1 _s
5“(_83/‘56) 2 (P - poo)”% < 8(/)) - g(poo)

Proof. The characterization (2.1a) and (2.1b) of the global minimizer po, and the non-negativity
of p — po outside of the support of p imply that

||

o-c. [(p-p< [ ((—A)SpoomHQ) (0 o).

Therefore, we deduce

1 A
[ o0+ 5 [ 1o o)
R R

E0) = Elpo) = 5 | p(=0us) 5~
/Rp(—ﬁm)_sp— /RP(_amr)_SPoo - /]R(p_pm)(_am)_spoo
1

/(P - poo)(_a:m)is(p - poo) = 5”(_8x$)7%(p - poo)”%
R

1
2
1
> —
- 2

N = N

O]

Since the norm ||(—8,2) "2 (p— poo)||2 is in general weak, it is unlikely to produce a bound on any
stronger LP norm for the difference p— po,. One way to show the exponential convergence of p(t) to
Poo 18 by assuming that a higher norm on p — po is bounded. For example, if H(—am)% (p— pPso)ll2
is uniformly bounded, then we have (easy to establish in Fourier space)

lp = pooll3 < 1(=022)2 (p = poo)ll2ll(=02z) "2 (p = poo)l2
and ||p — pool|2 converges to zero also exponentially fast, but with a smaller rate.

Let us prove that in fact the exponential convergence also holds in L? without any additional
hypothesis. For this, since (—3m)_%u usually has more regularity than u, we need to look for
an interpolation inequality containing some sort of fractional differentiation, which in our case, it
seems natural to be a Holder semi-norm, i.e., for every a € (0,1] and v € C*(R) we denote the
a-Holder semi-norm of v by

[U]a := sup "U(.%) — U(y)‘

TH#Y ‘x - y‘a
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Therefore, to obtain the desired decay in L? we shall use the following new interpolation in-
equality, that we will prove for any dimension d > 1

Theorem 3.4. Let 0 < a < 1 and 0 < s < d/2 and 0 < r < «/2. There exists a constant
C =C(d,s,a) such that

lully < ClI(=A)"2ull* [u]g? |lull? (3.11)
for all u € LY(RY) N C*(R?) with
oo " o — s(d+2r) ” _ s(d+2a—2r)
LI >T2d+a)(s+r1)’ ST 2d+a)(s+r1)

Proof. We ﬁrs‘_c use Fourier variables, Plancherel’s formula, and the Holder’s inequality to interpo-
late between H”(R?) and (—A)~2u € L*(R?) obtaining

ol = [ faorae < ([ ia@riae) ([ |a<g>|2|§|2rd§)1“”
— -2yl ([ ra@)r?mrm‘ds)l_” 2

where 01 =7/(s+7), for all 0 < s < 1/2 and r > 0.

Our aim now is to bound H”(R%) by [u], and ||u|;. We write the singular integral representation
of this norm (Proposition 3.4 of [24]) and we spht it as

2 2r )
Il = [ )PIede =Cu //R |xiy|d+2r dady

u(y))? // u(y))?
=Ca, / dxdy + Cq,, dxdy
oyl <R |:c—y|d+27" S \x—yw?r

=L+ 1.

To estimate I;, we make use of |u(z) — u(y)| < [u]a |z — y|* to get, by the change of variables
(z,w) = (x —y,z +y), that

I C// ())dxd<(]r // “()‘dd
P |lz—y|<R ‘LU— ‘d+2 Y a le—y|<R |JU— |d+2r ¢

< Clula lul, / 122724 4z < Clula]ju RO,
|2|<R

where the last step is allowed since 27 < «. On the other hand, we can similarly estimate the far
field term as

(u(z) — u(y)? 2 . .
IQ:Cd’rﬂ —dxdy<4cdr u(z)|“dx —— < C|lul|5R T
w—yl>R T = YT Rd’ (@) czr 2T 2

Joining the two integrals and optimizing in R, we infer
lully < Cllally ™l 2. (3.13)

We finally use the classical interpolation results between LP(RY) and C%(RY) spaces due to L. Niren-
berg in [33], see also [11] for a full statement. This interpolation inequality ensures the existence
of a constant depending on « and d such that

ul|2 < C ul| {2/ (@t d) )4/ (o+d)
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Putting it together with (3.13), it yields

lully, < Cllulf* 220/ pyzn/ e,
Finally, we plug this into (3.12) to conclude (3.11). O

Therefore, from Theorem 3.1 and Theorem 3.4, we derive the following decay towards the
stationary state under the L? norm.

Corollary 3.5. Assume that py satisfies 0 < po(z) < Ae=*| for all z € R and some a, A > 0.
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data poy satisfies

1(8) = poclla < C (1 + [pocla)™ (Ep0) = E(poc)) * 7M.

Proof. Given pp under the conditions above, we know from Theorem 5.1 of [12] that there exists an
a € (0,1) such that the solution p of (1.1) satisfies p(¢) € C*(R) for all ¢ > 0 with a uniform bound
in time. Since py is (1 — s)-Holder continuous, we can use inequality (3.11) for u = p(t) — po and
0 <r < 2min(e, 1 —s) to conclude. O

Let us point out that the decay of the entropy in Theorem 3.1 implies a uniform in time control
of the second moment of the solutions trivially at least for 0 < s < 1/2. Otherwise, one has to
work a bit due to the sign of the constant in the fractional operator. In any case, a uniform in time
control of the second moments together with the L?-decay rates implies L'-decay rates of the form

Ioto) — ol < [

|z|<R
< (B 10(0) = pclly 4 7 [ 1o (o(0.0) + st

d/(d
< C(E(p0) + E(poo)) T Ip(t) = poolly’ Y, (3.14)

plt,2) = pre(oldo+ [ p(t,2) = poc(a)d

lz|=R

by choosing R ~ ((£(po) + £(pes))/ [|p(t) — poslls )2/(d+4); see a similar calculation in [21, Lemma
2.24] for instance. In one dimension, using Corollary 3.5, we obtain the decay rate e~ Aait/5 for
1o(t) = pooll;-

We finally remark that the decay in LP-norms obtained via Corollary 3.5 and (3.14) are trans-
lated through the change of variables (1.4)-(1.5) into algebraic decay rates toward self-similar
solutions of the original fractional porous medium equation (1.2).

4 Fractional diffusion in higher dimensions and open problems

In this section, we first show some formal computations using the Bakry-Emery strategy [3] to
identify the main technical problem with passing from dimension d = 1 to d > 1 in the results
about the exponentially fast decay of the relative entropy €(p|pso) := E(p) — E(pso). We shall do
this by taking the second order time derivative of £(p|pss) along the evolution equation (1.1).

We first rewrite the equation (1.1) as

pr =V - (pV¢E) with & := (=A)"*p + \|z|?/2. (4.1)
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Assuming that p (and thus £) is smooth enough, taking the time derivative of the entropy dissipation
rate Z(p) along the evolution equation, we obtain

d
C1() = / Ve + 2 / PVE - Ve,

— [V (VOIvER +2 [ pVe- VI8 (T (7).

Using the fact D2¢ = D?(—A)~*p+ M for the Hessian matrix of &, the first term on the right hand
side above can be written as

[ V- oVOIVER = =2 [ o Ve ve) = -2x(p) ~ 2 [ p(DP(-8) -V, VE)

Therefore, dZ(p)/dt = —2)\Z(p) — 2R(p) with

Rip) = [ o(DP-0) - T6.56) = [ 09T [(-2) (V- (79)]. (42)

The entropy-entropy dissipation method can be summarized as follows: if R(p) > 0 for the so-
lution p, then from the conditions d€(p)/dt = —Z(p) and dZ(p)/dt < —2XZ(p), we can conclude
that Z(p)(t) < Z(p)(0)e™ and E(p)(t) — E(poo) < (E(p)(0) — E(poo))e 2, or the exponential
convergence of both Z(p)(t) and £(p)(t) — £(pso) towards zero.

When s = 0, the equation (1.1) reduces to the standard porous medium equation with quadratic
nonlinearity. In this special case, the non-negativity of R(p) was established in [20] using several
integration by parts, leading to (with & = p + A|z|?/2)

1
Rip) =5 [ FLA¢7 + D3] = 0.
Here || A||p = \/tr(AT A) is the Frobenius norm of the matrix A. Consequently, by deducing various

decay on the norms of p(t,-) — pso(+), the solution p converges to its steady state exponentially fast.

However, in the case s € (0,1) considered here, it is not immediately clear whether R(p)
given in (4.2) above is nonnegative or not. To simplify R(p), we need more explicit expressions
of D?(=A)~%p and V[(—=A)~*(V - (pV¥))], or the second order derivatives of the Riesz potential
of p and pV¢ respectively. Since these derivatives can not be applied to the corresponding kernel
K(x) = cq,s|x|>*~? directly, we have to invoke the technical lemma 4.2.

Using the singular integral representation (4.4), we obtain

Rip) = [ {r@)0e@) 61D (-8)plo) = pla)ore(a) Dy (~A)pdy 8] (o) o

S O B LR AEE

{0/€@) (p(@) = p(w)) — p(@)9;8(2) + p()Dy€(v) pdyda
= le:s Z/Rd /Rd p(x)p(y)0i& (v) Kij(x — y){ajf(l') — ajf(y)}dydx

c+
_ % / / p(2)p(y){VE(x) — VE(Y), K(z — y) (VE(x) — VE(Y)) dydz, (4.3)
Rd JRA

where K(z) is a matrix with entries K;;(x) and the integrand is symmetrized in the last step.
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Remark 4.1. Similar expressions already appear in the context of non-local equations for granular
flow or biological swarms, when the interaction kernel is smoother. In fact, if p is a smooth solution
of py = V- (pVK * p) with a smooth kernel K such that the Hessian D?K is locally integrable,
then the time derivative of the interaction energy 3 [[ K(z — y)p(2)p(y)dydzx is — [ p|VE[2dz with
& = K * p. The second order time derivative of the energy is

- [ mivetds 2 [ e Vs
Rd Rd

which is exactly

L, [ o@D = ) (V@) - V). Vele) = Vew) ydu da
by applying appropriate integration by parts.

In one dimension, K(x) = (2 —2s)|z|?*73 is a positive scalar and R(p) > 0 for any non-negative
density p, leading to the desired exponential convergence. However, in higher dimensions, the
matrix K(x) can be written as

K(z) = 222 ((d+ 2 — 25)0 @ /| — I),

which has one positive eigenvalue A\; = (d + 1 — 2s)|z|?>*~%2 and d — 1 negative eigenvalues )\; =
—|z|?79=2j = 2,.-.  d. Therefore, it is not known from (4.3) whether R(p) is positive or not. We
can conclude that both the relative entropy £(p) — €(pso) and the entropy dissipation rate converge
to zero exponentially fast in dimension d = 1, but in the cases of d > 1, it is unknown whether
there is always exponentially fast convergence.

The above approach for the exponential decay in one dimension can be proved rigorously, by
establishing the results for mollified solutions to the regularized equation (with linear diffusion
for example). One of the main difficulties in our case lies in the definition and continuity of the
entropy dissipation Z(p). The set of functions for which Z is finite is difficult to handle. Therefore,
passing to the limit the exponential decay of the entropy dissipation using density argument is a
complicated task in our case.

Finally, we state the following lemma which was used before in order to simplify the expression
for R(p) and for the sake of completeness, we shall also include a proof of it.

Lemma 4.2. If p is a smooth function on R%, then the components of the Hessian matriz of the
Riesz potential (—A)™®p are given by

Diy(=8) (o) = 0y (~8) *p(w) = ~cf,, [ Kl =) (p(o) = p(1) . (4.4
where K;j(x) = |2|*7274((d 4 2 — 2s)z2;/|z|* — 6;j) and ¢, = (d — 25)cqs.
Proof. Since the Riesz potential (—A)™% is a singular integral, these second order derivatives can
not be applied to the kernel (1.3) directly, but can be derived from several equivalent approaches.
We shall interpret D;;(—A)*p as distributional derivatives, and obtain the expressions using the

definition in a similar way as representing the velocity gradient using vorticity in fluid mechan-
ics [30].
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For any function ¢ € S(R?) (the Schwartz space of rapidly decreasing functions on R?), the
distributional derivative D;;(—A)™p is defined as

Cs N ply)  o()
<D7,](_A) P, ¢> = <(_A zy¢ /Rd /Rd |IE *y|d 95 81‘283’;] dyda;

Next, we use integration by parts to shift the derivatives from the test function ¢ to the singular
integral (—A)~*p, by writing the above expression as a limit outside a ball. More precisely,

s L ()
((=A)~°p, Dijp) = 11%1+ Cds/Rd p(y) [/B(y’e)c |z — y|4=25 dx;0; dr | dy

v —yi  Op()
lim (d — 25)cy s dz| dy,
ei%l+( s)cq, /Rd p(y) [/B(y,e)c |z — y|7F22 9, Ty

where B(y, €)° is the complement of the ball B(y,¢) = {x € R? | |z —y| < €} and the integration on
the boundary 0B(y, €) vanishes in the limit. Integrating by parts again, we obtain (the unit outer
normal at = € B(y,€)¢is —(z —y)/|x — y|)

lim ot Kooz — dr — (zi — yi) (x5 — y5) as. | dy. (.
i CdS/Rd p(y) [/B(y,e)c i@ —y)o(z)dz /BB(y,e) & — |32 o(x) y, (4.5)

where CIS = (d —2s)cq,s and

1 0? 2s5—d 1 L
- s=d _ __ ~ _ _ [(d+2-2 ”—5, )
d—2s axﬁx]’ ‘ Ix—y|d+2_25 <( + S) | |2 ]>

Since for any x € 0B(y, €), ¢(x) = ¢(y) + (z —y) - Vo (y) + O(|z — y|?), we can replace ¢(z) by
¢(y) in the boundary integral in (4.5), i.e

Kij(z) =

: (zi — i) (zj — yj) (@i — i) (@ — y;)
lim o(x)dS, = ¢(y) lim dsS,.
e—0*t 0B(y,e€) |{L‘ - y‘d+3_28 ( ) ( ) e—0t 0B(y,e€) ‘{L‘ - y‘d+3_28

It is easy to see that for j # 1,

(zi —vi) (@ — y5) /
ds, = Kij(x —y)dz =0,
/BB(y,e) ’.’E - y|d+3 28 B(y,e)¢ !

and for j =i,

(xi — yi) (@i — yi) / S -
s, = Kii(z —y)dx = €574,
/83(11,6) ’.’L‘— ’d+3 2 B(y,e)° d

where [S%!| is the area of the unit sphere S~ = {z € R? | |2| = 1}.

Therefore, the distributional derivative (D;;(—A)~%p, ¢) written as the limit (4.5) can be sim-
plified as

(Dij(=A)"°p,¢) = lim cj /Rd p(y) [/B( . Kij(x —y)p(z)dy — ¢>(y)/

Kij(x —y)dy| dy
€—! 0+ B(y’E)c ]( ) ]

e—0t

— lm ¢, / / o Kole =) (p0)0(e) = plw)olw) dud

= — lim ¢} /]Rd o(x) [/B(w,e) Kij(z —y)(o(x) — ¢(y))dy] dz.

e—0t
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This implies the following singular integral represent of the Hessian matrix of (—A)™*p:

Dij(=A)p(x) = —cj /Rd Kij(z —y)(p(x) — p(y))dy.
In particular, we can write the fractional Laplacian (—A)'=%p as

d
(=A)'0p(x) = = > Di(=A)"p(x) = ¢, /Rd Kij(z —y)(p(x) — p(y))dy
=1

—op, [ L)

d
b8 Ja o — yar2=z

recovering its standard singular integral representation [27, 37]. O

Another possible way to obtain the exponential decay for higher dimensions could be the foll-
wing: we know from section 2 that the exponential decay for the entropy follows from the generalized

log-Sobolev inequality
1
E(p) = E(pec) < 57 Z(p)- (4.6)

Therefore, in order to obtain (4.6) for other dimensions than one, one idea is to follow a similar
approach as Del Pino and Bolbeault [23] by expanding both sides of (4.6) and obtaining the
equivalent inequality

A [ @) -2) stz 2 [ plaa T-2)pta)ie]

<) + [ pla)|T(-A)pla) P

The second term on the left-hand side can be simplified using the definition of (—A)™%p as the

Riesz integral
., 1
(=8 *pla) = eus | g o).

and consequently
= /R pla) V() pla)de = 2(d — 2s)es /R d /R @) - ()l — yP* 2y
—(@=2)cas [ | [ olelotula — o dyda
— (d—25) /R ) (- ) pla)da.

Therefore, the inequality (4.6) becomes

/\(d+1—2s)/

[ p(a)(—8) pla)de < 208 + / ()| V(—A) p(a)Pdx. (A7)

Rd

To get a self-consistent inequality, we have to write £(ps) in terms of some functionals of p, which
is established through the total conserved mass, M = [p = [ poo. Using the explicit expression
for peo(r) = Kg5(R? — |2|?)}%, the identity (2.2) implies that

A d g A

2
= — - = f < R.
5T % 2[w| , for|z| <R

(=A)"poo()
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Therefore, we conclude that
1

AK, d
[ —_A)S 2 _ d,s 2 .2)1-s 2 2
Epe) = 5 [ pmela) ((~8)pmcla) + M) = 2582 [ (B2~ o)l (d_QSR +|x\>dx
d+4—2s

MK g dn?/?(d+2—25)[(2— s s = 22
N 4d7 (d —(QS)F(d/2 —|)- 3(— s) )Rd+4 * = Kas (/ pu)d:ﬁ) ’
where (1.6) is used in the last step, together with the constant
d(d + 2 — 2s)(d+4-29)/(d+2-25) § (d-25)/(d+2-25)
(d — 25)(d + 4 — 25)2(d+2=5)/(d+2-25) rd/(d—2-2s) "

Kd,s =

Therefore, (4.6) is reduced to an inequality bounding the integral [ p(—A)~*pdx by [ pdx and
[ pIV(=A)"%p|* dx, that is,

N+ 1-25) [ pla)(~8) *pla)dn < 27Ky ( /. p(w)d:c) T [ eV -a) ) P,

Rd
where the equality holds for the steady state po,. In general, it is easier to prove the equivalent
inequality in the “product form”

/Rd p(—A) P pde < C (/Rd pd:E) o </Rd pIV(A)‘Sde:z)e, (4.8)

where 0 = 5 dﬁ__;_‘zs is determined by the homogeneity and C is given by any function p(z) =

A(R? — |z — 20|?)}7® (which is independent of A, R and o).

However, unlike the case of porous medium equation [23], we still do not know how to
prove (4.8) to establish the log-Sobolev inequality (4.6). The main difficulty lies in the integral
Jga PIV(—=A)7%p|?, where basic questions like monotonicity under symmetric decreasing rearrange-
ment are not clear. Because of the equivalence between (4.6) and (4.8), we showed in section 2
that (4.8) holds in one dimension and it is a consequence of the HWI inequalities, but it remains
an open problem to prove or disprove (4.8) in higher dimensions.
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