27 research outputs found

    Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves

    Get PDF
    Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations

    Shellfish Face Uncertain Future in High CO2 World: Influence of Acidification on Oyster Larvae Calcification and Growth in Estuaries

    Get PDF
    BACKGROUND: Human activities have increased atmospheric concentrations of carbon dioxide by 36% during the past 200 years. One third of all anthropogenic CO(2) has been absorbed by the oceans, reducing pH by about 0.1 of a unit and significantly altering their carbonate chemistry. There is widespread concern that these changes are altering marine habitats severely, but little or no attention has been given to the biota of estuarine and coastal settings, ecosystems that are less pH buffered because of naturally reduced alkalinity. METHODOLOGY/PRINCIPAL FINDINGS: To address CO(2)-induced changes to estuarine calcification, veliger larvae of two oyster species, the Eastern oyster (Crassostrea virginica), and the Suminoe oyster (Crassostrea ariakensis) were grown in estuarine water under four pCO(2) regimes, 280, 380, 560 and 800 microatm, to simulate atmospheric conditions in the pre-industrial era, present, and projected future concentrations in 50 and 100 years respectively. CO(2) manipulations were made using an automated negative feedback control system that allowed continuous and precise control over the pCO(2) in experimental aquaria. Larval growth was measured using image analysis, and calcification was measured by chemical analysis of calcium in their shells. C. virginica experienced a 16% decrease in shell area and a 42% reduction in calcium content when pre-industrial and end of 21(st) century pCO(2) treatments were compared. C. ariakensis showed no change to either growth or calcification. Both species demonstrated net calcification and growth, even when aragonite was undersaturated, a result that runs counter to previous expectations for invertebrate larvae that produce aragonite shells. CONCLUSIONS AND SIGNIFICANCE: Our results suggest that temperate estuarine and coastal ecosystems are vulnerable to the expected changes in water chemistry due to elevated atmospheric CO(2) and that biological responses to acidification, especially calcifying biota, will be species-specific and therefore much more variable and complex than reported previously

    Gastrointestinal and external parasitism in the Magellanic Horned Owl Bubo magellanicus (Strigiformes: Strigidae) in Chile

    Get PDF
    Abstract To describe the parasitic community of the Magellanic Horned Owl, Bubo magellanicus (Aves, Strigiformes), 19 carcasses from central Chile were analyzed. Ectoparasites were collected through plumage inspection, while endoparasites were collected through traditional techniques of parasitological necropsy. Sixteen owls were infected with at least one species of ectoparasite (84.21%) or endoparasite (31.58%). Eleven of 19 birds (57.89%) harbored feather mites of the three species Pandalura cirrata (42.11%), Glaucalges attenuatus (47.37%), and Kramerella sp. (10.53%), whereas 16 individuals (84.21%) harbored the chewing louse Strigiphilus chilensis. Only six birds (31.58%) were infected with helminths; the nematodes Capillaria tenuissima (26.32%) and Dispharynx nasuta (5.26%); the acanthocephalan Centrorhynchus spinosus (5.26%); and the trematode Neodiplostomum sp. (5.26%). Apart from S . chilensis, all parasites comprised new records for B . magellanicus
    corecore