419 research outputs found

    Unusual presentation of basilar artery stroke secondary to patent foramen ovale: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report a case of a patient presenting with neuropsychiatric manifestations secondary to paradoxical embolism</p> <p>Case presentation</p> <p>Unexplained rapid onset of confusion with amnesia and minimal neurological deficits can be a manifestation of various systemic causes of which stroke, either ischemic or hemorrhagic, is one. Thorough and systematic evaluation of these patients can be highly rewarding in terms of optimizing patient outcome. We report the case of a 45-year-old woman whose initial presentation was with acute onset of confusion, memory loss with personality change and headaches. A differential diagnosis of systemic illness and cerebral pathology was entertained. She was empirically treated for neurological infection. Brain imaging revealed bilateral thalamic and cerebellar infarction. Further evaluation with an aim to define the etiology, revealed the diagnosis of Patent Foramen Ovale with paradoxical embolism. The differential diagnosis of unexplained rapid onset of confusion, amnesia with minimal motor neurological deficits and relevant appropriate investigations are discussed in this case report.</p> <p>Conclusion</p> <p>This case highlights the importance of recognising the atypical manifestations of posterior fossa stroke. In young patients presenting with non-focal neuropsychiatric manifestations, paradoxical embolism, secondary to patent foramen ovale is a possible cause.</p

    Validation and optimization of AFP-based biomarker panels for early HCC detection in Latin America and Europe

    Get PDF
    Background: HCC is a major cause of cancer death worldwide. Serum biomarkers such as alpha-fetoprotein (AFP), protein induced by vitamin K absence-II, and the Gender, Age, AFP-L3, AFP, Des-gamma-carboxy prothrombin (GALAD) score have been recommended for HCC surveillance. However, inconsistent recommendations in international guidelines limit their clinical utility.Methods: In this multicenter study, over 2000 patient samples were collected in 6 Latin American and 2 European countries. The performance of the GALAD score was validated in cirrhotic cases, and optimized versions were tested for early-stage HCC and prediagnostic HCC detection.Results: The GALAD score could distinguish between HCC and cirrhosis in Latin American patients with an AUC of 0.76, sensitivity of 70%, and specificity of 83% at the conventional cutoff value of −0.63. In a European cohort, GALAD had an AUC of 0.69, sensitivity of 66%, and specificity of 72%. Optimizing the score in the 2 large multicenter cohorts revealed that AFP-L3 contributed minimally to early-stage HCC detection. Thus, we developed a modified GALAD score without AFP-L3, the ASAP (age, sex, AFP, and protein induced by vitamin K absence-II), which showed promise for early-stage HCC detection upon validation. The ASAP score also identified patients with cirrhosis at high risk for advanced-stage HCC up to 15 months before diagnosis (p &lt; 0.0001) and differentiated HCC from hemangiomas, with a specificity of 100% at 71% sensitivity.Conclusion: Our comprehensive analysis of large sample cohorts validates the GALAD score’s utility in Latin American, Spanish, and Dutch patients for early-stage HCC detection. The optimized GALAD without AFP-L3, the ASAP score, is a good alternative and shows greater promise for HCC prediction

    Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit

    Get PDF
    We will investigate the influence of the inhomogeneity of the universe, especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a gravitationally bound local system such as the solar system. We concentrate on the dynamical perturbation to the planetary motion and derive the leading order effect generated from the LTB model. It will be shown that there appear not only a well-known cosmological effect arisen from the homogeneous and isotropic model, such as the Robertson-Walker (RW) model, but also the additional terms due to the radial inhomogeneity of the LTB model. We will also apply the obtained results to the problem of secular increase in the astronomical unit, reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of the universe cannot have a significant effect for explaining the observed dAU/dt=15±4 [m/century]d{\rm AU}/dt = 15 \pm 4 ~{\rm [m/century]}.Comment: 12 pages, no figure, accepted for publication in Journal of Astrophysics and Astronom

    Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-α production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) produced in macrophages plays a pivotal role as a leishmanicidal agent. A previous study has demonstrated that 20% of the <it>L. (V.) braziliensis </it>isolated from initial cutaneous lesions of patients from the endemic area of Corte de Pedra, Bahia, Brazil, were NO resistant. Additionally, 5 to 11% of the patients did not respond to three or more antimony treatments" (refractory patients). The aim of this study is to investigate if there is an association between the resistance of <it>L. (V.) braziliensis </it>to NO and nonresponsiveness to antimony therapy and cytokine production.</p> <p>Methods</p> <p>We evaluated the <it>in vitro </it>toxicity of NO against the promastigotes stages of <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients, and the infectivity of the amastigote forms of these isolates against human macrophages. The supernatants from <it>Leishmania </it>infected macrophage were used to measure TNF-α and IL-10 levels.</p> <p>Results</p> <p>Using NaNO<sub>2 </sub>(pH 5.0) as the NO source, <it>L. (V.) braziliensis </it>isolated from refractory patients were more NO resistant (IC50 = 5.8 ± 4.8) than <it>L. (V.) braziliensis </it>isolated from responsive patients (IC50 = 2.0 ± 1.4). Four isolates were selected to infect human macrophages: NO-susceptible and NO-resistant <it>L. (V.) braziliensis </it>isolated from responsive and refractory patients. NO-resistant <it>L. (V.) braziliensis </it>isolated from refractory patients infected more macrophages stimulated with LPS and IFN-γ at 120 hours than NO-susceptible <it>L. (V.) braziliensis </it>isolated from refractory patients. Also, lower levels of TNF-α were detected in supernatants of macrophages infected with NO-resistant <it>L. (V.) braziliensis </it>as compared to macrophages infected with NO-susceptible <it>L. (V.) braziliensis </it>(p < 0.05 at 2, 24 and 120 hours), while no differences were detected in IL-10 levels.</p> <p>Conclusion</p> <p>These data suggest that NO resistance could be related to the nonresponsiveness to antimony therapy seen in American Tegumentary Leishmaniasis.</p

    Stoichiometric representation of geneproteinreaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction

    Get PDF
    Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.DM was supported by the Portuguese Foundationfor Science and Technologythrough a post-doc fellowship (ref: SFRH/BPD/111519/ 2015). This study was supported by the PortugueseFoundationfor Science and Technology (FCT) under the scope of the strategic fundingof UID/BIO/04469/2013 unitand COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145FEDER-000004) fundedby EuropeanRegional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte. This project has received fundingfrom the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 686070. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germiantion of Sisymbrium officinales L. Seeds

    Get PDF
    The rupture of the seed coat and that of the endosperm were found to be two sequential events in the germination of Sisymbrium officinale L. seeds, and radicle protrusion did not occur exactly in the micropylar area but in the neighboring zone. The germination patterns were similar both in the presence of gibberellins (GA4+7) and in presence of ethrel. The analysis of genes involved in GAs synthesis and breakdown demonstrated that (1) SoGA2ox6 expression peaked just prior to radicle protrusion (20–22 h), while SoGA3ox2 and SoGA20ox2 expression was high at early imbibition (6 h) diminishing sharply thereafter; (2) the accumulation of SoGA20ox2 transcript was strongly inhibited by paclobutrazol (PB) as well as by inhibitors of ET synthesis and signaling (IESS) early after imbibition (6 h), while SoGA3ox2 and SoGA2ox6 expression was slowly depressed as germination progressed; (3) ethrel and GA4+7 positively or negatively affected expression of SoGA3ox2, SoGA20ox2, and SoGA2ox6, depending on the germination period studied. Regarding genes involved in ET synthesis, our results showed that SoACS7 was expressed, just prior to radicle emergence while SoACO2 expression slowly increased as germination progressed. Both genes were strongly inhibited by PB but were almost unaffected by externally added ethrel or GA4+7. These results suggest that GAs are more important than ET during the early stages of imbibition, while ET is more important at the late phases of germination of S. officinale L. seed

    Conservation, Variability and the Modeling of Active Protein Kinases

    Get PDF
    The human proteome is rich with protein kinases, and this richness has made the kinase of crucial importance in initiating and maintaining cell behavior. Elucidating cell signaling networks and manipulating their components to understand and alter behavior require well designed inhibitors. These inhibitors are needed in culture to cause and study network perturbations, and the same compounds can be used as drugs to treat disease. Understanding the structural biology of protein kinases in detail, including their commonalities, differences and modes of substrate interaction, is necessary for designing high quality inhibitors that will be of true use for cell biology and disease therapy. To this end, we here report on a structural analysis of all available active-conformation protein kinases, discussing residue conservation, the novel features of such conservation, unique properties of atypical kinases and variability in the context of substrate binding. We also demonstrate how this information can be used for structure prediction. Our findings will be of use not only in understanding protein kinase function and evolution, but they highlight the flaws inherent in kinase drug design as commonly practiced and dictate an appropriate strategy for the sophisticated design of specific inhibitors for use in the laboratory and disease therapy
    • …
    corecore