65 research outputs found

    α-1-Antitrypsin: Sequence of the Z variant tryptic peptide

    Get PDF

    Temperature-responsive release of thyroxine and its environmental adaptation in Australians.

    Get PDF
    The hormone thyroxine that regulates mammalian metabolism is carried and stored in the blood by thyroxine-binding globulin (TBG). We demonstrate here that the release of thyroxine from TBG occurs by a temperature-sensitive mechanism and show how this will provide a homoeostatic adjustment of the concentration of thyroxine to match metabolic needs, as with the hypothermia and torpor of small animals. In humans, a rise in temperature, as in infections, will trigger an accelerated release of thyroxine, resulting in a predictable 23% increase in the concentration of free thyroxine at 39°C. The in vivo relevance of this fever-response is affirmed in an environmental adaptation in aboriginal Australians. We show how two mutations incorporated in their TBG interact in a way that will halve the surge in thyroxine release, and hence the boost in metabolic rate that would otherwise occur as body temperatures exceed 37°C. The overall findings open insights into physiological changes that accompany variations in body temperature, as notably in fevers

    Proteolytic inactivation of human α1 antitrypsin by human stromelysin

    Get PDF
    Abstractα1Antitrypsin (α1AT) is the main physiological inhibitor of neutrophil elastase, a serine protease which has been implicated in tissue degradation at inflammatory sites. We report here that the connective tissue metalloproteinase, stromelysin, cleaved α1AT (54 kDa), producing fragments of approximately 50 kDa and 4 kDa, as shown by gel electrophoresis. The cleavage of α1AT was accompanied by inactivation of its elastase inhibitory capacity. Isolation of the 4 kDa fragment by reversed-phase HPLC, followed by N-terminal amino acid sequencing, demonstrated that the cleavage of α1AT occurred at the Pro357-Met358 (P2P1) peptide bond, one peptide bond to the N-terminal side of the inhibitory site. We suggest that stromelysin may potentiate the activity of neutrophil elastase by proteolytically inactivating α1AT

    Measurement of the total angiotensinogen and its reduced and oxidised forms in human plasma using targeted LC-MS/MS.

    Get PDF
    Angiotensinogen (AGT) is a critical protein in the renin-angiotensin-aldosterone system and may have an important role in the pathogenesis of pre-eclampsia. The disulphide linkage between cysteines 18 and 138 has a key role in the redox switch of AGT which modulates the release of angiotensin I with consequential effects on blood pressure. In this paper, we report a quantitative targeted LC-MS/MS method for the reliable measurement of the total AGT and its reduced and oxidised forms in human plasma. AGT was selectively enriched from human plasma using two-dimensional chromatography employing concanavalin A lectin affinity and reversed phase steps and then deglycosylated using PNGase F. A differential alkylation approach was coupled with targeted LC-MS/MS method to identify the two AGT forms in the plasma chymotryptic digest. An additional AGT proteolytic marker peptide was identified and used to measure total AGT levels. The developed MS workflow enabled the reproducible detection of total AGT and its two distinct forms in human plasma with analytical precision of ≤ 15%. The LC-MS/MS assay for total AGT in plasma showed a linear response (R2 = 0.992) with a limit of quantification in the low nanomolar range. The method gave suitable validation characteristics for biomedical application to the quantification of the oxidation level and the total level of AGT in plasma samples collected from normal and pre-eclamptic patients

    Molecular Mechanism of Z α1-Antitrypsin Deficiency.

    Get PDF
    The Z mutation (E342K) of α1-antitrypsin (α1-AT), carried by 4% of Northern Europeans, predisposes to early onset of emphysema due to decreased functional α1-AT in the lung and to liver cirrhosis due to accumulation of polymers in hepatocytes. However, it remains unclear why the Z mutation causes intracellular polymerization of nascent Z α1-AT and why 15% of the expressed Z α1-AT is secreted into circulation as functional, but polymerogenic, monomers. Here, we solve the crystal structure of the Z-monomer and have engineered replacements to assess the conformational role of residue Glu-342 in α1-AT. The results reveal that Z α1-AT has a labile strand 5 of the central β-sheet A (s5A) with a consequent equilibrium between a native inhibitory conformation, as in its crystal structure here, and an aberrant conformation with s5A only partially incorporated into the central β-sheet. This aberrant conformation, induced by the loss of interactions from the Glu-342 side chain, explains why Z α1-AT is prone to polymerization and readily binds to a 6-mer peptide, and it supports that annealing of s5A into the central β-sheet is a crucial step in the serpins' metastable conformational formation. The demonstration that the aberrant conformation can be rectified through stabilization of the labile s5A by binding of a small molecule opens a potential therapeutic approach for Z α1-AT deficiency

    Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins.

    Get PDF
    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr(342) of the reactive loop and Tyr(241) of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys(243), which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg(378). Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature

    Chemical gradients in the Milky Way from the RAVE data

    Get PDF
    Aims. We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane. Methods. We analysed three different samples selected from three independent datasets: a sample of 19 962 dwarf stars selected from the RAVE database, a sample of 10 616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (R-g) and the maximum distances from the Galactic plane reached by the stars along their orbits (Z(max)). We measured the chemical gradients as functions of R-g at different Z(max). Results. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Z(max) < 0.4 kpc and 4.5 < R-g(kpc) < 9.5, the iron gradient for the RAVE sample is d[Fe/H]/dR(g) = -0.065 dex kpc(-1), whereas for the GCS sample it is d[Fe/H]/dR(g) = -0.043 dex kpc(-1) with internal errors of +/-0.002 and +/-0.004 dex kpc(-1), respectively. The gradients of the RAVE and GCS samples become flatter at larger Z(max). Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dR(g) = +0.053 +/- 0.003 dex kpc(-1) at Z(max) < 0.4 kpc and remains positive at any Z(max). These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower R-g and metallicity which, together with the thin-disc stars with a higher metallicity and R-g, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Z(max) found in the RAVE and the GCS samples may therefore be due to the superposition of thin-and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besancon model
    corecore