248 research outputs found
Novel A-B type oscillations in a 2-D electron gas in inhomogenous magnetic fields
We present results from a quantum and semiclassical theoretical study of the
and resistivities of a high mobility 2-D electron gas
in the presence of a dilute random distribution of tubes with magnetic flux
and radius , for arbitrary values of and . We
report on novel Aharonov-Bohm type oscillations in and ,
related to degenerate quantum flux tube resonances, that satisfy the selection
rule , with an integer. We discuss possible
experimental conditions where these oscillations may be observed.Comment: 11 pages REVTE
A PCA spatial pattern based artificial neural network downscaling model for urban flood hazard assessment
International audienceWe present two statistical models for downscaling flood hazard indicators derived from upscaledshallow water simulations. These downscaling models are based on the decomposition of hazardindicators into linear combinations of spatial patterns obtained from a Principal ComponentAnalysis (PCA). Artificial Neural Networks (ANNs) are used to model the relationship betweenlow resolution (LR) and high resolution (HR) information drawn from hazard indicators. Inboth statistical models, the PCA features, i.e. the linear weights of the spatial patterns, of theLR hazard indicator are taken as inputs to the ANNs. In the first model, there is one ANNper HR cell where the hazard indicator is to be estimated and the output of the ANN is thehazard indicator value at that cell. In the second model, there is a single ANN for the wholeHR mesh whose outputs are the PCA features of the HR hazard indicator. An estimate of thehazard indicator is obtained by combining the ANN’s outputs with the HR spatial patterns.The two statistical downscaling models are evaluated and compared at estimating the waterdepth and the norm of the unit discharge, two common hazard indicators, on simulations fromfive synthetic urban configurations and one field-test case. Analyses are carried out in termsof relative absolute errors of the statistical downscaling model with respect to the LR hazardindicator. They show that (i) both statistical downscaling models provide estimates that aremore accurate than the LR hazard indicator in most cases and (ii) the second downscalingmodel yields consistently lower errors for both hazard indicators for all flow scenarios on allconfigurations considered. The statistical models are three orders of magnitude faster than HRflow simulations. Used in conjunction with upscaled flood models such as porosity models, theyappear as a promising operational alternative to direct flood hazard assessment from HR flowsimulations
The Generalized Star Product and the Factorization of Scattering Matrices on Graphs
In this article we continue our analysis of Schr\"odinger operators on
arbitrary graphs given as certain Laplace operators. In the present paper we
give the proof of the composition rule for the scattering matrices. This
composition rule gives the scattering matrix of a graph as a generalized star
product of the scattering matrices corresponding to its subgraphs. We perform a
detailed analysis of the generalized star product for arbitrary unitary
matrices. The relation to the theory of transfer matrices is also discussed
Particle Production near an AdS Crunch
We numerically study the dual field theory evolution of five-dimensional
asymptotically anti-de Sitter solutions of supergravity that develop
cosmological singularities. The dual theory is an unstable deformation of the N
= 4 gauge theory on R S3, and the big crunch singularity in the bulk
occurs when a boundary scalar field runs to infinity. Consistent quantum
evolution requires one imposes boundary conditions at infinity. Modeling these
by a steep regularization of the scalar potential, we find that when an
initially nearly homogeneous wavepacket rolls down the potential, most of the
potential energy of the initial configuration is converted into gradient energy
during the first oscillation of the field. This indicates there is no
transition from a big crunch to a big bang in the bulk for dual boundary
conditions of this kind.Comment: 20 pages, 6 figure
Enhanced ERbeta immunoexpression and apoptosis in the germ cells of cimetidine-treated rats
<p>Abstract</p> <p>Background</p> <p>Cimetidine, refereed as antiandrogenic drug, causes hormonal changes in male patients such as increased testosterone and FSH levels. In the rat testis, structural alterations in the seminiferous tubules have been related to germ cell loss and Sertoli cell death by apoptosis. Regarding the important role of Sertoli cells in the conversion of testosterone into estrogen, via aromatase, the immunoexpression of estrogen receptors-beta (ERbeta) was evaluated in the germ cells of untreated and treated rats with cimetidine. A relationship between ERbeta immunoreactivity and apoptosis was also investigated in the germ cells of damaged tubules.</p> <p>Methods</p> <p>Immunohistochemistry for detection of ERbeta and TUNEL method were performed in testicular sections of adult male rats treated with 50 mg/Kg of cimetidine (CmG) or saline solution (CG) for 52 days.</p> <p>Results</p> <p>In CG, a cytoplasmic immunoexpression for ERbeta was observed in spermatogonia, primary spermatocytes and spermatids. An evident ERbeta immunoreactivity was always observed in the flagellum and residual bodies of late spermatids. In CmG, the cytoplasm or cytoplasm and nuclei of germ cells of the damaged tubules by cimetidine showed enhanced ERbeta immunostaining. TUNEL-labeling was usually observed in the same germ cell types exhibiting enhanced ERbeta immunoreactivity.</p> <p>Conclusion</p> <p>The presence of ERbeta immunolabeling in the flagellum and residual bodies of spermatids reinforces the role of estrogen in spermiogenesis. The overexpression of ERbeta in the germ cells of CmG could be related to a possible interference of cimetidine on tubular androgenization and/or on the intratubular aromatase due to Sertoli cell damage. The parallelism between ERbeta overexpression and apoptosis indicates a participation of ERbeta on germ cell death.</p
Kirchhoff's Rule for Quantum Wires
In this article we formulate and discuss one particle quantum scattering
theory on an arbitrary finite graph with open ends and where we define the
Hamiltonian to be (minus) the Laplace operator with general boundary conditions
at the vertices. This results in a scattering theory with channels. The
corresponding on-shell S-matrix formed by the reflection and transmission
amplitudes for incoming plane waves of energy is explicitly given in
terms of the boundary conditions and the lengths of the internal lines. It is
shown to be unitary, which may be viewed as the quantum version of Kirchhoff's
law. We exhibit covariance and symmetry properties. It is symmetric if the
boundary conditions are real. Also there is a duality transformation on the set
of boundary conditions and the lengths of the internal lines such that the low
energy behaviour of one theory gives the high energy behaviour of the
transformed theory. Finally we provide a composition rule by which the on-shell
S-matrix of a graph is factorizable in terms of the S-matrices of its
subgraphs. All proofs only use known facts from the theory of self-adjoint
extensions, standard linear algebra, complex function theory and elementary
arguments from the theory of Hermitean symplectic forms.Comment: 40 page
Holographic renormalization as a canonical transformation
The gauge/string dualities have drawn attention to a class of variational
problems on a boundary at infinity, which are not well defined unless a certain
boundary term is added to the classical action. In the context of supergravity
in asymptotically AdS spaces these problems are systematically addressed by the
method of holographic renormalization. We argue that this class of a priori ill
defined variational problems extends far beyond the realm of holographic
dualities. As we show, exactly the same issues arise in gravity in non
asymptotically AdS spaces, in point particles with certain unbounded from below
potentials, and even fundamental strings in flat or AdS backgrounds. We show
that the variational problem in all such cases can be made well defined by the
following procedure, which is intrinsic to the system in question and does not
rely on the existence of a holographically dual theory: (i) The first step is
the construction of the space of the most general asymptotic solutions of the
classical equations of motion that inherits a well defined symplectic form from
that on phase space. The requirement of a well defined symplectic form is
essential and often leads to a necessary repackaging of the degrees of freedom.
(ii) Once the space of asymptotic solutions has been constructed in terms of
the correct degrees of freedom, then there exists a boundary term that is
obtained as a certain solution of the Hamilton-Jacobi equation which
simultaneously makes the variational problem well defined and preserves the
symplectic form. This procedure is identical to holographic renormalization in
the case of asymptotically AdS gravity, but it is applicable to any Hamiltonian
system.Comment: 37 pages; v2 minor corrections in section 2, 2 references and a
footnote on Palatini gravity added. Version to appear in JHE
Bessel Process and Conformal Quantum Mechanics
Different aspects of the connection between the Bessel process and the
conformal quantum mechanics (CQM) are discussed. The meaning of the possible
generalizations of both models is investigated with respect to the other model,
including self adjoint extension of the CQM. Some other generalizations such as
the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are
discussed with respect to the underlying conformal group structure.Comment: 28 Page
Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction
A path-integral approach for delta-function potentials is presented.
Particular attention is paid to the two-dimensional case, which illustrates the
realization of a quantum anomaly for a scale invariant problem in quantum
mechanics. Our treatment is based on an infinite summation of perturbation
theory that captures the nonperturbative nature of the delta-function bound
state. The well-known singular character of the two-dimensional delta-function
potential is dealt with by considering the renormalized path integral resulting
from a variety of schemes: dimensional, momentum-cutoff, and real-space
regularization. Moreover, compatibility of the bound-state and scattering
sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations
were added for the sake of clarity; the main results and conclusions are
unchange
Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus)
Exposure of olfactory epithelium to environmentally relevant concentrations of copper disrupts olfaction in fish. To examine
the dynamics of recovery at both functional and morphological levels after acute copper exposure, unilateral exposure of goldfish olfactory epithelia to 100 μM CuSO4 (10 min) was followed by electro-olfactogram (EOG) recording and scanning electron microscopy. Sensitivity to amino acids (L-arginine
and L-serine), generally considered food-related odorants, recovered most rapidly (three days), followed by that to
catecholamines(3-O-methoxytyramine),bileacids(taurolithocholic acid) and the steroid pheromone, 17,20 -dihydroxy-4-pregnen-
3-one 20-sulfate, which took 28 days to reach full recovery. Sensitivity to the postovulatory pheromone prostaglandin F2R had
not fully recovered even at 28 days. These changes in sensitivity were correlated with changes in the recovery of ciliated and microvillous receptor cell types. Microvillous cells appeared largely unaffected by CuSO4 treatment. Cilia in
ciliated receptor neurones, however, appeared damaged one day post-treatment and were virtually absent after three days but
had begun to recover after 14 days. Together, these results support the hypothesis that microvillous receptor neurones detect amino acids whereas ciliated receptor neurones were not functional and are responsible for detection of social stimuli (bile acidsandpheromones).Furthermore, differences in sensitivity to copper may be due to different transduction pathways in
the different cell types
- …