1,110 research outputs found

    Essential oil phytocomplex activity, a review with a focus on multivariate analysis for a network pharmacology-informed phytogenomic approach

    Get PDF
    Thanks to omic disciplines and a systems biology approach, the study of essential oils and phytocomplexes has been lately rolling on a faster track. While metabolomic fingerprinting can provide an effective strategy to characterize essential oil contents, network pharmacology is revealing itself as an adequate, holistic platform to study the collective effects of herbal products and their multi-component and multi-target mediated mechanisms. Multivariate analysis can be applied to analyze the effects of essential oils, possibly overcoming the reductionist limits of bioactivity-guided fractionation and purification of single components. Thanks to the fast evolution of bioinformatics and database availability, disease-target networks relevant to a growing number of phytocomplexes are being developed. With the same potential actionability of pharmacogenomic data, phytogenomics could be performed based on relevant disease-target networks to inform and personalize phytocomplex therapeutic application

    Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview

    Get PDF
    Alzheimer’s Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1–42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease

    Determinants of out-of-hours service users' potentially inappropriate referral or non-referral to an emergency department: a retrospective cohort study in a local health authority, Veneto Region, Italy

    Get PDF
    BACKGROUND: A growing presence of inappropriate patients has been recognised as one of the main factors influencing emergency department (ED) overcrowding, which is a very widespread problem all over the world. On the other hand, out-of-hours (OOH) physicians must avoid delaying the diagnostic and therapeutic course of patients with urgent medical conditions. The aim of this study was to analyse the appropriateness of patient management by OOH services, in terms of their potentially inappropriate referral or non-referral of non-emergency cases to the ED. METHODS: This was an observational retrospective cohort study based on data collected in 2011 by the local health authority No. 4 in the Veneto Region (Italy). After distinguishing between patients contacting the OOH service who were or were not referred to the ED, and checking for patients actually presenting to the ED within 24\u2005hours thereafter, these patients' medical management was judged as potentially appropriate or inappropriate. RESULTS: The analysis considered 22\u2005662 OOH service contacts recorded in 2011. The cases of potentially inappropriate non-referral to the ED were 392 (1.7% of all contacts), as opposed to 1207 potentially inappropriate referrals (5.3% of all contacts). Age, nationality, type of disease and type of intervention by the OOH service were the main variables associated with the appropriateness of patient management. CONCLUSIONS: These findings may be useful for pinpointing the factors associated with a potentially inappropriate patient management by OOH services and thus contribute to improving the deployment of healthcare and the quality of care delivered by OOH services

    P450-mediated electrochemical sensing of drugs in human plasma for personalized therapy

    Get PDF
    Nowadays, the concept of personalized therapy gains momentum. Pharmacogenomics, which represents a first answer to these needs, has the drawback of neglecting some variations of therapy response due to non-genetic factors. The aim of this paper is to investigate the feasibility of a non-genetic approach to personalized therapy, via the point-of-care drug monitoring in biological fluids with electrochemical biosensors. The proposed biosensor is based on the use of P450 enzymes as probe molecules, thanks to their key role in human metabolism. Multiwalled carbon nanotubes are used to enhance biosensor sensitivity. Results show how the proposed system is capable to detect drug amounts within the corresponding pharmacological ranges in human serum

    Seasonal adaptation of the thermal‐based two‐source energy balance model for estimating evapotranspiration in a semiarid tree‐grass ecosystem

    No full text
    © 2020 by the authors.The thermal-based two-source energy balance (TSEB) model has accurately simulated energy fluxes in a wide range of landscapes with both remote and proximal sensing data. However, tree-grass ecosystems (TGE) have notably complex heterogeneous vegetation mixtures and dynamic phenological characteristics presenting clear challenges to earth observation and modeling methods. Particularly, the TSEB modeling structure assumes a single vegetation source, making it difficult to represent the multiple vegetation layers present in TGEs (i.e., trees and grasses) which have different phenological and structural characteristics. This study evaluates the implementation of TSEB in a TGE located in central Spain and proposes a new strategy to consider the spatial and temporal complexities observed. This was based on sensitivity analyses (SA) conducted on both primary remote sensing inputs (local SA) and model parameters (global SA). The model was subsequently modified considering phenological dynamics in semi-arid TGEs and assuming a dominant vegetation structure and cover (i.e., either grassland or broadleaved trees) for different seasons (TSEB-2S). The adaptation was compared against the default model and evaluated against eddy covariance (EC) flux measurements and lysimeters over the experimental site. TSEB-2S vastly improved over the default TSEB performance decreasing the mean bias and root-mean-square-deviation (RMSD) of latent heat (LE) from 40 and 82 W m−2 to −4 and 59 W m−2, respectively during 2015. TSEB-2S was further validated for two other EC towers and for different years (2015, 2016 and 2017) obtaining similar error statistics with RMSD of LE ranging between 57 and 63 W m−2. The results presented here demonstrate a relatively simple strategy to improve water and energy flux monitoring over a complex and vulnerable landscape, which are often poorly represented through remote sensing models.The research received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721995. It was also funded by Ministerio de Economía y Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects. The research infrastructure at the measurement site in Majadas de Tiétar was partly funded through the Alexander von Humboldt Foundation, ELEMENTAL (CGL 2017-83538-C3-3-R, MINECO-FEDER) and IMAGINA (PROMETEU 2019; Generalitat Valenciana).Peer reviewe

    Sudan Black B treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections

    Get PDF
    Interference by autofluorescence is one of the major concerns of immunofluorescence analysis of in situ hybridization-based diagnostic assays. We present a useful technique that reduces autofluorescent background without affecting the tissue integrity or direct immunofluorescence signals in brain sections. Using six different protocols, such as ammonia/ethanol, Sudan Black B (SBB) in 70% ethanol, photobleaching with UV light and different combinations of them in both formalin-fixed paraffin-embedded and frozen human brain tissue sections, we have found that tissue treatment of SBB in a concentration of 0.1% in 70% ethanol is the best approach to reduce/eliminate tissue autofluorescence and background, while preserving the specific fluorescence hybridization signals. This strategy is a feasible, non-time consuming method that provides a reasonable compromise between total reduction of the tissue autofluorescence and maintenance of specific fluorescent labels.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2007/56146-2]Comissao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)[1429/08-6

    Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types

    Full text link
    © 2016 Elsevier Ltd Terrestrial ecosystem gross primary production (GPP) is the largest component in the global carbon cycle. The enhanced vegetation index (EVI) has been proven to be strongly correlated with annual GPP within several biomes. However, the annual GPP-EVI relationship and associated environmental regulations have not yet been comprehensively investigated across biomes at the global scale. Here we explored relationships between annual integrated EVI (iEVI) and annual GPP observed at 155 flux sites, where GPP was predicted with a log-log model: ln(GPP)=a×ln(iEVI)+b. iEVI was computed from MODIS monthly EVI products following removal of values affected by snow or cold temperature and without calculating growing season duration. Through categorisation of flux sites into 12 land cover types, the ability of iEVI to estimate GPP was considerably improved (R2 from 0.62 to 0.74, RMSE from 454.7 to 368.2 g C m−2 yr−1). The biome-specific GPP-iEVI formulae generally showed a consistent performance in comparison to a global benchmarking dataset (R2 = 0.79, RMSE = 387.8 g C m−2 yr−1). Specifically, iEVI performed better in cropland regions with high productivity but poorer in forests. The ability of iEVI in estimating GPP was better in deciduous biomes (except deciduous broadleaf forest) than in evergreen due to the large seasonal signal in iEVI in deciduous biomes. Likewise, GPP estimated from iEVI was in a closer agreement to global benchmarks at mid and high-latitudes, where deciduous biomes are more common and cloud cover has a smaller effect on remote sensing retrievals. Across biomes, a significant and negative correlation (R2 = 0.37, p < 0.05) was observed between the strength (R2) of GPP-iEVI relationships and mean annual maximum leaf area index (LAImax), and the relationship between the strength and mean annual precipitation followed a similar trend. LAImax also revealed a scaling effect on GPP-iEVI relationships. Our results suggest that iEVI provides a very simple but robust approach to estimate spatial patterns of global annual GPP whereas its effect is comparable to various light-use-efficiency and data-driven models. The impact of vegetation structure on accuracy and sensitivity of EVI in estimating spatial GPP provides valuable clues to improve EVI-based models
    corecore